题目把Nim游戏为什么可以取异或和讲解得十分清楚,建议多读几次,理解一下

再一个,可以把每次异或视为一次取数,因此(k[i]^sg)<k[i]即为一种可行操作

/*
Nim is a 2-player game featuring several piles of stones.
Players alternate turns, and on his/her turn, a player’s
move consists of removing one or more stones from any
single pile. Play ends when all the stones have been
removed, at which point the last player to have moved is
declared the winner. Given a position in Nim, your task
is to determine how many winning moves there are in that
position. A position in Nim is called “losing” if the first player
to move from that position would lose if both sides played
perfectly. A “winning move,” then, is a move that leaves
the game in a losing position. There is a famous theorem
that classifies all losing positions. Suppose a Nim position
contains n piles having k1, k2, …, kn stones respectively;
in such a position, there are k1 + k2 + … + kn possible
moves. We write each ki in binary (base 2). Then, the Nim
position is losing if and only if, among all the ki’s,
there are an even number of 1’s in each digit position.
In other words, the Nim position is losing if and only if
the xor of the ki’s is 0. Consider the position with three piles given by k1 = 7, k2
= 11, and k3 = 13. In binary, these values are as follows: 111
1011
1101 There are an odd number of 1’s among the rightmost digits,
so this position is not losing. However, suppose k3 were
changed to be 12. Then, there would be exactly two 1’s in
each digit position, and thus, the Nim position would become
losing. Since a winning move is any move that leaves the
game in a losing position, it follows that removing one
stone from the third pile is a winning move when k1 = 7, k2
= 11, and k3 = 13. In fact, there are exactly three winning
moves from this position: namely removing one stone from any
of the three piles.
*/
#include <set>
#include <map>
#include <cmath>
#include <queue>
#include <vector>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,k[];
int main(){
while(scanf("%d",&n)){
if(n==)break;
int sg=,ans=;
for(int i=;i<=n;i++)scanf("%d",&k[i]),sg^=k[i];
for(int i=;i<=n;i++)if((k[i]^sg)<k[i])ans++;
printf("%d\n",ans);
}
return ;
}

C++-POJ2975-Nim的更多相关文章

  1. poj2975 Nim 胜利的方案数

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5545   Accepted: 2597 Description N ...

  2. poj2975(nim游戏取法)

    求处于必胜状态有多少种走法. if( (g[i]^ans) <= g[i]) num++; //这步判断很巧妙 // // main.cpp // poj2975 // // Created b ...

  3. POJ2975 Nim 【博弈论】

    DescriptionNim is a 2-player game featuring several piles of stones. Players alternate turns, and on ...

  4. POJ2975:Nim(Nim博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7279   Accepted: 3455 题目链接:http://p ...

  5. poj2975 Nim(经典博弈)

    Nim Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5866   Accepted: 2777 Description N ...

  6. POJ2975 Nim 博弈论 尼姆博弈

    http://poj.org/problem?id=2975 题目始终是ac的最大阻碍. 问只取一堆有多少方案可以使当前局面为先手必败. 显然由尼姆博弈的性质可以知道需要取石子使所有堆石子数异或和为0 ...

  7. [poj2975]Nim_博弈论

    Nim poj-2975 题目大意:给定n堆石子,问:多少堆石子满足操作之后先手必胜. 注释:$1\le n\le 10^3$. 想法: 我们设M=sg(x1)^sg(x2)^...^sg(xn).其 ...

  8. [LeetCode] Nim Game 尼姆游戏

    You are playing the following Nim Game with your friend: There is a heap of stones on the table, eac ...

  9. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  10. HDU 5795 A Simple Nim 打表求SG函数的规律

    A Simple Nim Problem Description   Two players take turns picking candies from n heaps,the player wh ...

随机推荐

  1. idea svn提交时,performing vcs refresh时间很长的解决办法

    解决方法:version control -> local changes -> local changelist 列表中无用的文件或文件夹右键选择svn忽略 ps:原因是文件太多,导致对 ...

  2. node的httpserver简单创建

    1.设计原则为文件夹名字可以依据资源来命名,静态资源统一命名 ps:路径中绝对和相对路径,依据server.js本身的位置而言 const http = require("http" ...

  3. python+appium+真机测试

    appium环境搭建 操作系统: Windows 10 被测平台: Android真机 appium服务器: appium Desktop appium客户端: python-client 测试的AP ...

  4. python——面向对象(1),基础

    """面向对象:抽象化编程思想.类,对象:用类来创建(实例化)对象.类:一系列特征和行为相同的事物总和, 1.属性:特征 2.行为:方法 定义类 :PEP 8要求标识符的 ...

  5. 38.Python自定义计算时间过滤器

    在写自定义的过滤器时,因为django.template.Library.filter()本身可以作为一个装饰器,所以可以使用: register = django.template.Library( ...

  6. python3-cookbook笔记:第六章 数据编码和处理

    python3-cookbook中每个小节以问题.解决方案和讨论三个部分探讨了Python3在某类问题中的最优解决方式,或者说是探讨Python3本身的数据结构.函数.类等特性在某类问题上如何更好地使 ...

  7. Sublime Text 3 最新可用注册码(免破解)(转载)

    转载地址:https://sjolzy.cn/Sublime-Text-3-crack-registration-code.html 12年的时候分享过Sublime Text 2的注册码和破解方法. ...

  8. shell中expect免交互

    expect前言观察ssh登录的交互现象有些程序难以避免的需要交互.你该如何解决脚本与程序的交互问题?名词解释期待, 预期, 盼望, 预料,料想, 指望, 希望, 要求,想, 认为一.概述 我们通过S ...

  9. 第十届蓝桥杯CB题目I-分析

    思路分析://感谢写文博主 思路:相信大多数人和我一样在比赛的时候把这题想的太简单了_(:з」∠)_ 这题和去年的最后一题很类似,就是分类讨论,去年放在了最后一题,今年在倒数第二题,说明难度不算太难, ...

  10. 康托展开+反向bfs

    康托展开+反向bfs hdu 1043 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1043 #include <iostream> # ...