题面

看到数据范围这么小,第一眼想到爆搜。

然而这样做的复杂度是 \(\mathcal{O}(n! \times n)\) 的,明显会 TLE。

于是考虑状压 DP。

我们设 \(dp_{i,j}\) 表示当前走过的集合为 \(i\),且停留在 \(j\) 号点的最短路径长度。

转移的话可以枚举一个点 \(k\),意为从 \(k\) 号点走到点 \(j\),走过的集合变成了 \(i\)。然后就有了转移方程:\(dp_{i,j}=\min\{dp_{i-2^j,k}+a_{k,j}\}\),其中 \(a_{k,j}\) 表示点 \(k\) 到点 \(j\) 的距离。

注意点的标号从 \(0\) 开始。

这里介绍一个判断 \(j\) 号点是否出现在集合 \(i\) 中的技巧:直接判断 i >> j & 1 是否为 \(\text{true}\) 即可。

#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi using namespace std; typedef long long LL;
typedef pair <int, int> PII;
typedef pair <int, PII> PIII; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} inline LL gl()
{
LL f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} int n, m, a[23][23], dp[(1 << 20) + 5][23]; int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 0; i < n; i+=1)
for (int j = 0; j < n; j+=1)
a[i][j] = gi();
memset(dp, 0x3f, sizeof dp);
dp[1][0] = 0;
for (int i = 0; i < (1 << n); i+=1)
{
for (int j = 0; j < n; j+=1)
{
if (i >> j & 1) //判断集合 i 中是否含有 j
{
for (int k = 0; k < n; k+=1)
{
if ((i - (1 << j)) >> k & 1) //判断没有访问 j 之前有没有访问过 k
{
dp[i][j] = min(dp[i][j], dp[i - (1 << j)][k] + a[k][j]); //转移
}
}
}
}
}
printf("%d\n", dp[(1 << n) - 1][n - 1]);
return 0;
}

题解【AcWing91】最短Hamilton路径的更多相关文章

  1. 最短Hamilton路径【状压DP】

    给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...

  2. AcWing 91. 最短Hamilton路径

    今天第一次在\(AcWing\)这个网站上做题,来发一下此网站的第一篇题解 传送门 思路 直接枚举的话时间复杂度为\(O(n*n!)\) 复杂度显然爆炸,所以我们用二进制枚举,这样就可以把复杂度降到\ ...

  3. # 最短Hamilton路径(二进制状态压缩)

    最短Hamilton路径(二进制状态压缩) 题目描述:n个点的带权无向图,从0-n-1,求从起点0到终点n-1的最短Hamilton路径(Hamilton路径:从0-n-1不重不漏的每个点恰好进过一次 ...

  4. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  5. 位运算 - 最短Hamilton路径

    给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入格 ...

  6. 0103 最短Hamilton路径【状压DP】

    0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Ham ...

  7. 最短Hamilton路径

    题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每 ...

  8. 最短Hamilton路径-状压dp解法

    最短Hamilton路径 时间限制: 2 Sec  内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...

  9. ACAG 0x01-4 最短Hamilton路径

    ACAG 0x01-4 最短Hamilton路径 论为什么书上标程跑不过这道题-- 首先,这道题与今年CSP-S2的D1T3有着异曲同工之妙,那就是--都有$O(n!)$的做法!(大雾) 这道题的正解 ...

  10. 最短Hamilton路径 数位dp

    最短Hamilton路径 #include<bits/stdc++.h> using namespace std; ; <<maxn][maxn]; int maps[maxn ...

随机推荐

  1. 安全扫描工具Acunetix即AWVS_13.x系列破解版Linux & Windows

    本站所提供工具仅供技术学习交流.请勿用于非法行为.否则后果自负. Acunetix,自动化网络应用安全软件的先驱,已经宣布发布Acunetix第13版.新版本提供了一个改进的用户界面,并引入了创新,如 ...

  2. jquery带下拉列表的购物车组件封装

    按照国际惯例先放效果图 安静的时候它长这样 等待加载时它长这样(功能是设置的按需加载,网速慢或者加载数据大时会出现) 加载之后购物车没有商品时这样 有商品长这样 接下来放代码: cart.html & ...

  3. R12客户表结构分析

    客户表/联系人/PARTY关联   HZ_PARTIES 客户账户表   HZ_CUST_ACCOUNTS 例子:    select hp.party_number --客户注册标识         ...

  4. 关于建立 Carbon Forum 后 设置访问链接的问题

    如果不想访问的是根目录可以如下设置. location /cf { try_files $uri $uri/ /cf/index.php?$query_string;} 这样访问 /cf 目录就可以访 ...

  5. 如何在 vue 中添加权限控制管理?---vue中文社区

    前言 在一个项目中,一些功能会涉及到重要的数据管理,为了确保数据的安全,我们会在项目中加入权限来限制每个用户的操作.作为前端,我们要做的是配合后端给到的权限数据,做页面上的各种各样的限制. 需求 因为 ...

  6. 有关鼠标在页面body获取点击事件的问题

    首先说到这个问题我们先来谈谈body的高度问题,关于body高度的设置. 有些小伙伴可能就会说这个是多么的简单,直接进行如下操作不就可以了 body{ height:100%; } 这个设置虽然是想法 ...

  7. 1.Android网络编程-HTML介绍

    1.HTML介绍 超文本标记语言(HyperText Markup Language,简称:HTML)是一种用于创建网页的标准标记语言. 在Eclipse下则可以使用自带的浏览器浏览html: 2.H ...

  8. day19 几个模块的学习

    # 模块本质上就是一个 .py 文件# 数据类型# 列表.元组# 字典# 集合.frozenset# 字符串# 堆栈:特点:先进后出# 队列:先进先出 FIFO # from collections ...

  9. Ubuntu 系统连接到服务器

    Ubuntu 系统连接到服务器 我用的是 Ubuntu18.04 系统 假设你的服务器上的用户名是 root, 域名或者 ip 地址是 xyz 而且配置好了安全组(阿里云的)和云解析 首先要安装 op ...

  10. lucas定理及其拓展的推导

    lucas定理及其拓展的推导 我的前一篇博客-- lucas定理 https://mp.csdn.net/mdeditor/100550317#主要是给出了lucas的结论和模板,不涉及推导. 本篇文 ...