c#数字图像处理(十三)图像开运算与闭运算
图像开运算与闭运算定义
二值图像开运算的数学表达式为:
g(x, y)=open[f(x, y ), B]=dilate{erode[f(x, y),B],B}
二值图像的开运算事实上就是先作腐蚀运算,再作膨胀运算。
二值图像闭运算的数学表达式为:
g(x, y)=close[f(x, y ), B]=erode{dilate[f(x, y),B],B}
二值图像的闭运算事实上就是先作膨胀运算,再作腐蚀运算
private void opening_Click(object sender, EventArgs e)
{
if (curBitmap != null)
{
struction struForm = new struction();
struForm.Text = "开运算结构元素";
if (struForm.ShowDialog() == DialogResult.OK)
{
Rectangle rect = new Rectangle(, , curBitmap.Width, curBitmap.Height);
System.Drawing.Imaging.BitmapData bmpData = curBitmap.LockBits(rect, System.Drawing.Imaging.ImageLockMode.ReadWrite, curBitmap.PixelFormat);
IntPtr ptr = bmpData.Scan0;
int bytes = curBitmap.Width * curBitmap.Height;
byte[] grayValues = new byte[bytes];
Marshal.Copy(ptr, grayValues, , bytes); byte flagStru = struForm.GetStruction; byte[] temp1Array = new byte[bytes];
byte[] tempArray = new byte[bytes];
for (int i = ; i < bytes; i++)
{
tempArray[i] = temp1Array[i] = ;
} switch (flagStru)
{
case 0x11:
//腐蚀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x21:
//腐蚀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x12:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x22:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x14:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x24:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x18:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x28:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
default:
MessageBox.Show("错误的结构元素!");
break;
} grayValues = (byte[])tempArray.Clone(); System.Runtime.InteropServices.Marshal.Copy(grayValues, , ptr, bytes);
curBitmap.UnlockBits(bmpData);
} Invalidate();
}
}
#region 关于图像尺寸的说明 //本代码只能处理8位深度的512*512图像。可自行修改,如修改3位水平方向结构元素代码: //01修改成如下代码即可处理任意尺寸的8位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //02修改成如下代码即可处理任意尺寸的24位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 4; j < curBitmap.Width * 3 - 3; j += 3)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//}
#endregion
c#数字图像处理(十三)图像开运算与闭运算的更多相关文章
- 学习 opencv---(10)形态学图像处理(2):开运算,闭运算,形态学梯度,顶帽,黒帽合辑
上篇文章中,我们重点了解了腐蚀和膨胀这两种最基本的形态学操作,而运用这两个基本操作,我们可以实现更高级的形态学变换. 所以,本文的主角是OpenCV中的morphologyEx函数,它利用基本的膨胀和 ...
- 【OpenCV新手教程之十一】 形态学图像处理(二):开运算、闭运算、形态学梯度、顶帽、黑帽合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/23184547 作者:毛星云(浅墨) ...
- Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Win8 Metro(C#) 数字图像处理--1 图像打开,保存
原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作. Win8Metro编程中,图像相关 ...
- opencv 4 图像处理(2 形态学滤波:腐蚀与膨胀,开运算、闭运算、形态学梯度、顶帽、黑帽)
腐蚀与膨胀 膨胀(求局部最大值)(dilate函数) #include <opencv2/core/core.hpp> #include <opencv2/highgui/highg ...
- opencv-图像形态学之开运算、闭运算、形态学梯度、顶帽、黑帽合辑
转自:https://blog.csdn.net/poem_qianmo/article/details/24599073 1.1 开运算(Opening Operation) 开运算(Opening ...
- Win8 Metro(C#)数字图像处理--4图像颜色空间描述
原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述 图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...
- 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)
1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op = cv2.MO ...
- OpenCV:图像的开运算与闭运算
导包: import numpy as np import cv2 import matplotlib.pyplot as plt def show(image): plt.imshow(image) ...
随机推荐
- [微信跳转浏览器]微信跳转外部浏览器下载APP源码,可以实现自动跳转外部浏览器打开链接
基于微信后端开发了一款微信推广助手,使用了本程序生成的链接,用户在微信任意环境下点击链接或者扫描二维码,可以实现直接跳转手机默认浏览器并打开指定网页. 我们开发的此款跳转产品,应用范围广泛.除了下载A ...
- kali添加路由
kali添加路由 vim /etc/network/interfaces iface eth0 inet static address 192.168.1.10 netmask 255.255.255 ...
- eclipse中部署web项目时报错java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderListener的解决方法
解决方案: 1.右键点击项目--选择Properties,选择Deployment Assembly,在右边点击Add按钮,在弹出的窗口中选择Java Build Path Entries 2.点击N ...
- javaweb项目添加log4j日志
谈到我们在Java程序中经常用的日志,Log4j应该是耳熟能详了.这里先提下slf4j,英文全名是Simple Logging Facade for Java,直面意思是:Java的简单日志门面.sl ...
- Mac常用的软件推荐
Alfred 效率软件,让能更快的启动各种软件 VScode 编辑器,市面上最热的编辑器,好用的不只是一点点,加上Vim插件简直就是秒杀市面上各种IDE PicGo 一个开源图床软件,支持各大网站的图 ...
- win32汇编简单实现窗口程序
.386 .model flat,stdcall option casemap:none ;========================== ;include部分 include windows. ...
- 【小技巧】只用css实现带小三角的对话框样式
一个小小的技巧: 如图所示,这种小三角,不用图片,只用css怎么实现呢? 直接上代码吧: <!DOCTYPE html> <html> <head> <tit ...
- C#反射与特性(二):探究反射
目录 1,反射的使用概述 2,获取 Type 在上一章中,我们探究了 C# 引入程序集的各种方法,这一章节笔者将探究 C# 中使用反射的各种操作和代码实践. 1,反射的使用概述 1.1 什么是反射 & ...
- 小小知识点(三十五)MATLAB中如何更改所画Figure的图形比例
1. 打开一个figure,show plot tools and dock figure 2.选择图形的 more properties 3. 选择aspect ratio中的plotboxaspe ...
- 16.用pycharm导入自己写的模块时,import无法识别的解决办法
我们用pycharm打开自己写的代码,当多个文件之间有相互依赖的关系的时候,import无法识别自己写的文件,但是我们写的文件又确实在同一个文件夹中, 这种问题可以用下面的方法解决: 1)打开File ...