@desription@

给定一个序列 a,定义它的权值 \(c = \sum_{i=1}^{n}a_i\)。

你可以做如下的操作恰好一次:选择一个数,然后将它移动到一个位置(可以是原位置,序列开头与结尾)。

最大化序列权值。

input

第 1 行一个整数 n,表示序列长度(2 <= n <= 200000)。

第 2行 n 个整数 a1, a2, ..., an,表示这个序列(|ai| <= 1000000)。

output

输出一个整数,表示最大的序列权值。

sample input

4

4 3 2 5

sample output

39

sample explain

将 4 移动到 5 之前,得到 \(c = 1*3 + 2*2 + 3*4 + 4*5 = 39\)。

@solution@

移动可以向前移动也可以向后移动,我们仅考虑向后这一种,向前同理。

记原序列权值为 \(c\),再记 \(s[i]=\sum_{p=1}^{i}a_p\)。

考虑将第 i 号元素移动到第 j 个位置,则新序列权值为:

\[c'=c-a[i]*i+a[i]*j+(s[j]-s[i])
\]

你看,它多么的斜率优化。

求最大值是上凸包,横坐标为 \(-j\),从后往前是单增的。

但是……斜率为 \(a[i]\),是不单调的。

所以我们必须在凸包上作二分寻找答案。

一开始我很懵逼,凸包不应该是三分求极值吗?后来我才发现,二分原来是二分斜率。凸包上斜率是单增的,所以可以使用二分。(但是三分好像也可以……只是大概没人想写而已……明明三分更容易调错来着 qwq)。

二分找什么呢?就是找到一个点,它和它前驱的斜率大于等于 \(a[i]\),它和它后继的斜率小于等于 \(a[i]\)。

注意二分常见的错误:边界。

@accepted code@

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 200000;
int n;
ll a[MAXN + 5], s1[MAXN + 5], s2[MAXN + 5];
ll c1(int i) {return s1[n] - a[i]*i + s2[i-1];}
ll c2(int i) {return s1[n] - a[i]*i + s2[i];}
ll k1(int i) {return -a[i];}
ll k2(int i) {return a[i];}
ll x1(int j) {return j;}
ll x2(int j) {return -j;}
ll y1(int j) {return -s2[j-1];}
ll y2(int j) {return -s2[j];}
int stk[MAXN + 5], tp;
double slope1(int p, int q) {return 1.0*(y1(p) - y1(q))/(x1(p) - x1(q));}
double slope2(int p, int q) {return 1.0*(y2(p) - y2(q))/(x2(p) - x2(q));}
int main() {
scanf("%d", &n);
for(int i=1;i<=n;i++)
scanf("%lld", &a[i]);
for(int i=1;i<=n;i++) {
s1[i] = s1[i-1] + a[i]*i;
s2[i] = s2[i-1] + a[i];
}
ll ans = -(1LL<<62); tp = 0;
for(int i=1;i<=n;i++) {
while( tp > 1 && slope1(stk[tp - 1], stk[tp]) <= slope1(stk[tp], i) )
tp--;
stk[++tp] = i;
int le = 1, ri = tp;
while( le < ri ) {
int mid = (le + ri) >> 1;
if( slope1(stk[mid], stk[mid+1]) <= k1(i) ) ri = mid;
else le = mid + 1;
}
ans = max(ans, c1(i) + y1(stk[le]) - k1(i)*x1(stk[le]));
}
tp = 0;
for(int i=n;i>=1;i--) {
while( tp > 1 && slope2(stk[tp - 1], stk[tp]) <= slope2(stk[tp], i) )
tp--;
stk[++tp] = i;
int le = 1, ri = tp;
while( le < ri ) {
int mid = (le + ri) >> 1;
if( slope2(stk[mid], stk[mid+1]) <= k2(i) ) ri = mid;
else le = mid + 1;
}
ans = max(ans, c2(i) + y2(stk[le]) - k2(i)*x2(stk[le]));
}
printf("%lld\n", ans);
}

@details@

一开始我从前往后和从后往前都用同一个横坐标,然后因为枚举顺序不一样,导致一个是单增的一个是单减的。

单增的还好,单减的那个让我二分时各种边界错误……调到死都调不出来……

最后索性把单减那个横坐标取个相反数,变成单增的。然后一遍过 =_=。

@codeforces - 631E@ Product Sum的更多相关文章

  1. Codeforces 631E Product Sum 斜率优化

    我们先把问题分成两部分, 一部分是把元素往前移, 另一部分是把元素往后移.对于一个 i 后的一个位置, 我们考虑前面哪个移到这里来最优. 我们设最优值为val,   val = max(a[ j ] ...

  2. Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳

    E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...

  3. Codeforces Round #344 (Div. 2) E. Product Sum 二分斜率优化DP

    E. Product Sum   Blake is the boss of Kris, however, this doesn't spoil their friendship. They often ...

  4. Codeforces 396B On Sum of Fractions 数论

    题目链接:Codeforces 396B On Sum of Fractions 题解来自:http://blog.csdn.net/keshuai19940722/article/details/2 ...

  5. [codeforces631E]Product Sum

    E. Product Sum time limit per test: 1 second memory limit per test: 256 megabytes input:standard inp ...

  6. codeforces 963A Alternating Sum

    codeforces 963A Alternating Sum 题解 计算前 \(k\) 项的和,每 \(k\) 项的和是一个长度为 \((n+1)/k\) ,公比为 \((a^{-1}b)^k\) ...

  7. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  8. Codeforces 577B Modulo Sum

    http://codeforces.com/problemset/problem/577/B 题意:有n个数,求有无一个子序列满足和是m的倍数 思路:用模下的背包做,发现n是十的六次方级别,但是有个神 ...

  9. Codeforces 85 D. Sum of Medians

    题目链接:http://codeforces.com/contest/85/problem/D 做法果然男默女泪啊..... 大概就是直接开了一个$vector$每次插入删除都用自带的$insert$ ...

随机推荐

  1. 【JZOJ5231】【NOIP2017模拟A组模拟8.5】序列问题 线段树

    题面 100 在\(O(n^2)\)的基础上,我们可以用线段树来加速. 枚举了左端点之后,需要知道以这个左端点为起点的前缀max,前缀min. 这里只讨论前缀max,前缀min同理. 当我们倒序枚举左 ...

  2. nginx链接末尾自动补全斜杠

    放在locaation里边就行 if (-d $request_filename){ rewrite ^(.*[^/])$ $/ permanent;#加斜杠 } 这样,nginx就会进行判断了,如果 ...

  3. day36 05-Hibernate检索方式:离线条件查询

    图二 离线条件查询 Struts 2是web层的框架.session得在dao层才有.有的时候这些数据是没在你的对象里面的.像是否上传简历.这个字段不在我的数据库里面.例如是否上传简历这个条件不在我们 ...

  4. sending data mysql slow Mysql查询非常慢的可能原因

    1.用explain看看mysql的执行情况,可以得知,task_id扫描了近20万条数据,而且这个task_id不是索引 2.为这个task_id所在的表,将此字段添加索引后,查询就变得很快了

  5. idea添加jar包

    之前一直使用eclipse,现在使用idea,发现两者引用外部jar的时候不太一样,分享一下. 使用eclipse引用外部jar的时候,我们可以在工程下新建一个lib包来存放,然后add to bui ...

  6. deque简单解析

    deque是支持双端插入删除的容器,oi中用来维护单调队列 声明方式 deque<int> d1;//声明一个叫d1的双向队列 deque<int> d2(d1);//声明一个 ...

  7. SQL Server导入数据报错"无法在只读列“Id”中插入数据"

    使用sql server 导入数据报错:无法在只读列'id'中插入数据.如下图所示: 查找出现该问题的原因是表中id为自动增长的标识列,需要在[编辑映射]中勾选"启用标识插入": ...

  8. C# 通过URL得到图片的问题

    第一个方法在读取某些图片会报错 public static Image get_Fill_image(string url) { var image = new Image(); image.Sour ...

  9. Linux下安装zookeeper-3.4.13

    转载至:https://yq.aliyun.com/articles/662422 1.zookeeper官网下载安装包http://mirrors.hust.edu.cn/apache/zookee ...

  10. python正则表达式应用 重组分词