@noi.ac - 488@ cleaner
@description@
小Q计划在自己的新家中购置一台圆形的扫地机器人。小Q的家中有一个宽度为 m 的走廊,走廊很长,如果将这个走廊的俯视图画在平面直角坐标系上的话,那么走廊的两堵墙可以分别看作直线 y=0 和直线 y=m,两堵墙之间的部分代表走廊。
小Q会按照顺序依次在走廊中安置 n 个家具。第 i 个家具的位置为 (xi,yi),宽度可以忽略不计,同一个位置可能会有多个家具。
在商店中,扫地机器人的半径只能是整数。请找到最大可能的整数半径 R,使得以 R 为半径的扫地机器人可以从走廊的最左侧到达最右侧,扫地机器人不可以穿过家具或者墙壁,但是允许接触它们。
请写一个程序,帮助小 Q 在每次安置下新的家具后,都能计算出这个条件下允许通过的扫地机器人的最大可能半径。
input
第一行包含两个正整数 n, m,分别表示家具的数量和走廊的宽度。
接下来 n 行,每行两个正整数 xi, yi,表示第 i 个被安置下的家具的位置。
output
输出 n 行,每行输出一个整数,第 i 行输出在安置下前 i 个家具后,扫地机器人的半径的最大可能值。
sample input
5 6
1 2
3 2
2 1
1 3
4 5
sample output
2
2
2
1
1
对于 100% 的数据:1≤xi≤109,1≤yi<m≤109,n≤2500。
@solution@
不妨看看给定机器人半径为 r0 的情况下会发生什么。
我们可以以障碍为圆心,画出一个半径为 r0 的禁行区域(即:机器人的圆心不能经过这个区域)。
同时也可以以两面墙画出相应的禁行区域。
此时如果禁行区域将两面墙连接在一起,该半径 r0 不合法。
稍微转换一下:
如果半径 x 是使得障碍/墙 a, b 所对应的禁行区域连接(即有交集)的最小整数半径,我们就在 a, b 之间连一条边权为 x 的边。
当半径为 r0 的时候,如果存在一条两面墙之间的路径,使得路径上的每一条边的边权 <= r0,则 r0 不合法。
等价于路径上的最大边权 <= r0。
题目要求的是最大合法的整数半径 R,但我们可以将问题做一个简单的转换:找到最小不合法的整数半径 R'。
因为是整数,所以可以得到 R = R' - 1。
问题最终可以转换为:找到两墙之间的一条路径,使这条路径上的最大值最小。
这是一个典型的最小生成树应用。
怎么动态维护最小生成树呢?
一开始我原本想的是用 lct 来搞,看了题解才发现:
woc 它只需要求 O(n) 次最小生成树,所以没必要每个时刻的最小生成树都求解出来。
于是:每次加入一个新的障碍,增加 O(n) 条边,与上个时刻的最小生成树一起(也是 O(n) 条边)求解最小生成树。
跑 kruskal 即可。所以总的复杂度是优秀的 O(n^2log n)。
@accepted code@
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 2500 + 10;
const ll INF = (1LL<<60);
struct edge{
int u, v; ll d;
edge(int _u=0, int _v=0, ll _d=0):u(_u), v(_v), d(_d){}
friend bool operator < (edge a, edge b) {return a.d < b.d;}
}edges[2*MAXN];
int fa[MAXN];
int find(int x) {
return fa[x] = (fa[x] == x) ? x : find(fa[x]);
}
ll m, x[MAXN], y[MAXN]; int n;
ll dist(int i, int j) {
return ll(sqrt((x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j])));
}
vector<pair<int, ll> >G[MAXN];
void addedge(int u, int v, ll d) {
G[u].push_back(make_pair(v, d));
G[v].push_back(make_pair(u, d));
}
void dfs(int x, int f, ll d) {
if( x == n + 2 ) {
printf("%lld\n", d - 1);
return ;
}
for(int i=0;i<G[x].size();i++)
if( G[x][i].first != f )
dfs(G[x][i].first, x, max(d, G[x][i].second));
}
int main() {
scanf("%d%lld", &n, &m);
edges[1] = edge(n + 1, n + 2, m/2 + 1);
for(int i=1;i<=n;i++) {
scanf("%lld%lld", &x[i], &y[i]);
for(int j=1;j<i;j++)
edges[i+j] = edge(i, j, dist(i, j)/2 + 1);
edges[2*i] = edge(i, n + 1, y[i]/2 + 1);
edges[2*i+1] = edge(i, n + 2, (m - y[i])/2 + 1);
sort(edges + 1, edges + 2*i + 2);
for(int j=1;j<=n+2;j++)
fa[j] = j, G[j].clear();
int cnt = 0;
for(int j=1;j<=2*i+1;j++) {
if( find(edges[j].u) != find(edges[j].v) ) {
fa[find(edges[j].u)] = find(edges[j].v);
edges[++cnt] = edges[j];
}
}
for(int j=1;j<i+2;j++)
addedge(edges[j].u, edges[j].v, edges[j].d);
dfs(n + 1, -1, -INF);
}
}
@details@
康复计划 - 1。
还好。没有什么大的问题。我能记得最小生成树有这个经典应用感觉已经很奇迹了。
只是看题解之前差点就要写 lct 了。
@noi.ac - 488@ cleaner的更多相关文章
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- SpringBooot-基础<1>-构建项目
SpringBooot-基础<1>-构建项目 使用Springboot创建web工程,我使用的工具:STS,JDK1.8 1. File -> New -> Maven Pro ...
- Lab2 新增的细节
entry.S 新增加了这个入口函数 bootloader 加载完成后 将执行 kern_entry 而非lab1 中的kern_init defs.h 使用了 ({})宏定义的方式,并且执行了一行定 ...
- 数据库通过sql备份脚本恢复时,报错误The user specified as a definer ('root'@'%') does not exist
数据库通过sql备份脚本恢复时,报错误The user specified as a definer ('root'@'%') does not exist 当出现这个错误,意思是某个数据库对象的定义 ...
- opencv 图像基本操作
目录:读取图像,获取属性信息,图像ROI,图像通道的拆分和合并 1. 读取图像 像素值返回:直接使用坐标即可获得, 修改像素值:直接通过坐标进行赋值 能用矩阵操作,便用,使用numpy中的array ...
- Redhad的开源Paas平台:OpenShift
参考redHat的官方文章翻译而来:https://openshift.redhat.com/community/wiki/architecture-overview OpenShift Origin ...
- React高阶组件 和 Render Props
高阶组件 本质 本质是函数,将组件作为接收参数,返回一个新的组件.HOC本身不是React API,是一种基于React组合的特而形成的设计模式. 解决的问题(作用) 一句话概括:功能的复用,减少代码 ...
- Linux硬链接和软连接
硬链接(hard link): A是B的硬链接(A和B都是文件名),则A的目录项中的inode节点号与B的目录项中的inode节点号相同,即一个inode节点对应两个不同的文件名,两个文件名指向同一个 ...
- C#中时间差的计算
/// <summary> /// 已重载.计算两个日期的时间间隔,返回的是时间间隔的日期差的绝对值. /// </summary> /// <param name=&q ...
- PHP学习(数据类型)
PHP中,支持8种原始类型,其中包括四种标量类型.两种复合类型和两种特殊类型.PHP是一门松散类型的语言,不必向PHP声明变量的数据类型,PHP会自动把变量转换为自动的数据类型,一定程度降低了学习PH ...
- sqlserver 带返回值的存储过程
create proc test ) output as begin select @result = 'haha' ; end go ), @count int exec @count = test ...