poj 1274 The Perfact Stall
***The Perfect Stall***
Description
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall.
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.
Output
For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.
Sample Input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
Sample Output
4
题目大意:一共同拥有n头牛,m面墙。每头牛有自己喜欢的墙,要求每堵墙仅仅能有一头牛,求最多的匹配数
解题思路:,题目要求最大的匹配数,也就是通过左边的点,从右边的点穿出。使得穿出的个数最多,每 个点仅仅能穿过一次,我们在图中加个源点和汇点即可了。
。。然后,有了源点和汇点。源点到左边每一个的流量都是 1,也就是仅仅能通过 1 次,汇点也相似,而左边的点到右 的点相应的边的边容量为 1,就这样,这道题成功转换为最大流问题。建图后最大流解决
详细看代码:
/*
Date : 2015-8-21 晚上
Author : ITAK
Motto :
今日的我要超越昨日的我。明日的我要胜过今日的我;
以创作出更好的代码为目标。不断地超越自己。
*/
#include <iostream>
#include <cstdio>
using namespace std;
///oo表示无穷大
const int oo = 1e9+5;
///mm表示边的最大数量。由于要双向建边
const int mm = 111111;
///点的最大数量
const int mn = 1000;
///node:节点数,src:源点,dest:汇点,edge:边数
int node, src, dest, edge;
///ver:边指向的结点,flow:边的流量,next:链表的下一条边
int ver[mm], flow[mm], next[mm];
///head:节点的链表头,work:用于算法中的暂时链表头,dis:距离
int head[mn], work[mn], dis[mn], q[mn];
///初始化
void Init(int _node, int _src, int _dest)
{
node = _node, src = _src, dest = _dest;
for(int i=0; i<node; i++)
head[i] = -1;
edge = 0;
}
///添加边
void addedge(int u, int v, int c)
{
ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
///广搜计算出每一个点与源点的最短距离,假设不能到达汇点说明算法结束
bool Dinic_bfs()
{
int i, u, v, l, r = 0;
for(i=0; i<node; i++)
dis[i] = -1;
dis[q[r++]=src] = 0;
for(l=0; l<r; l++)
for(i=head[u=q[l]]; i>=0; i=next[i])
if(flow[i] && dis[v=ver[i]]<0)
{
///这条边必须有剩余流量
dis[q[r++]=v] = dis[u] + 1;
if(v == dest)
return 1;
}
return 0;
}
///寻找可行流的增广路算法。按节点的距离来找。加高速度
int Dinic_dfs(int u, int exp)
{
if(u == dest)
return exp;
///work 是暂时链表头,这里用 i 引用它,这样寻找过的边不再寻找*
for(int &i=work[u],v,tmp; i>=0; i=next[i])
{
if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
{
///正反向边容量改变
flow[i] -= tmp;
flow[i^1] += tmp;
return tmp;
}
}
return 0;
}
///求最大流。直到没有可行流
int Dinic_flow()
{
int i, ret=0, data;
while(Dinic_bfs())
{
for(i=0; i<node; i++)
work[i] = head[i];
while(data = Dinic_dfs(src, oo))
ret += data;//cout<<666<<endl;
}
return ret;
}
int main()
{
int n, m, u, v, c;
while(cin>>n>>m)
{
Init(n+m+2, 0, n+m+1);
for(u=1; u<=n; u++)
{
addedge(src, u, 1);
cin>>c;
while(c--)
{
cin>>v;
addedge(u, v+n, 1);
}
}
while(m)
addedge(n+m--, dest, 1);
cout<<Dinic_flow()<<endl;
}
return 0;
}
poj 1274 The Perfact Stall的更多相关文章
- Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)
Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...
- poj——1274 The Perfect Stall
poj——1274 The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25709 A ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24081 Accepted: 106 ...
- [题解]poj 1274 The Prefect Stall
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22736 Accepted: 10144 Description Far ...
- poj 1274 The Prefect Stall - 二分匹配
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22736 Accepted: 10144 Description Far ...
- poj 1274 The Perfect Stall 解题报告
题目链接:http://poj.org/problem?id=1274 题目意思:有 n 头牛,m个stall,每头牛有它钟爱的一些stall,也就是几头牛有可能会钟爱同一个stall,问牛与 sta ...
- [题解]poj 1274 The Perfect Stall(网络流)
二分匹配传送门[here] 原题传送门[here] 题意大概说一下,就是有N头牛和M个牛棚,每头牛愿意住在一些牛棚,求最大能够满足多少头牛的要求. 很明显就是一道裸裸的二分图最大匹配,但是为了练练网络 ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
随机推荐
- HDU 6071 Lazy Running (同余最短路)
Lazy Running Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)To ...
- python3-开发进阶Django-CBV和FBV及CBV的源码分析
一.CBV和FBV 全称应该是class base views 和function base views理解起来应该就是基于类的视图函数和基于函数的视图函数 FBV 应该是我目前最常用的一种方式了,就 ...
- insert into table(key)value('value') on duplicate key update key=value
MYSQL篇 新增如果unique索引字段重复,则更新: insert into mg_user(key,key2,key3)value('value','value2','value3') on d ...
- CDOJ 1280 772002画马尾 每周一题 div1 矩阵快速幂
772002画马尾 题目连接: http://acm.uestc.edu.cn/#/problem/show/1280 Description 众所周知772002很喜欢马尾,所以他决定画几幅马尾送给 ...
- hdu 5236 Article 概率dp
Article Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5236 ...
- KVM工具libvirt、virsh、virt-manager的简单介绍
KVM虚拟化中libvirt是目前使用最为广泛的对KVM虚拟机进行管理的工具和应用程序接口,而且一些常用的虚拟机管理工具(virsh.virt-install.virt-manager等)和云计算框架 ...
- 将WPF版的弹幕播放器给优化了一下
年前较闲的时候研究了一下WPF的性能优化,练手的时将之前写的弹幕播放器给重新写了一下.年前的时间不大够,没有写完,这两天接着弄了一下,基本上弄得差不多了. 主要重写了底层的渲染算法,优化后效果还是非常 ...
- Linux PHP 编译参数详解(二)
对于喜欢玩开源软件的童鞋么,都喜欢自己编译安装程序,本文说明下如何编译安装php的详细参数. 示例: ./configure \ --prefix=/usr/local/php --with-zlib ...
- 使用tcp.validnode_checking允许、限制机器访问数据库
使用tcp.validnode_checking允许.限制机器访问数据库 在$OREACLE_HOME/network/admin下直接修改sqlnet.ora文件,增加如下内容: tcp. ...
- Openshift中Configmap的使用
先基于外部镜像构建一个deployment ericdeMacBook-Pro:nginx ericnie$ oc --allow-missing-images --name=nginx-demo - ...