Description

煤矿工地可以看成是由隧道连接挖煤点组成的无向图。为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处。于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后,其他挖煤点的工人都有一条道路通向救援出口。请写一个程序,用来计算至少需要设置几个救援出口,以及不同最少救援出口的设置方案总数。

Input

输入文件有若干组数据,每组数据的第一行是一个正整数 N(N≤500),表示工地的隧道数,接下来的 N 行每行是用空格隔开的两个整数 S 和 T,表示挖       S 与挖煤点 T 由隧道直接连接。输入数据以 0 结尾。

Output

输入文件中有多少组数据,输出文件 output.txt 中就有多少行。每行对应一组输入数据的 结果。其中第 i 行以 Case i: 开始(注意大小写,Case 与 i 之间有空格,i 与:之间无空格,: 之后有空格),其后是用空格隔开的两个正整数,第一个正整数表示对于第 i 组输入数据至少需 要设置几个救援出口,第二个正整数表示对于第 i 组输入数据不同最少救援出口的设置方案总 数。输入数据保证答案小于 2^64。输出格式参照以下输入输出样例。

Sample Input

9
1 3
4 1
3 5
1 2
2 6
1 5
6 3
1 6
3 2
6
1 2
1 3
2 4
2 5
3 6
3 7
0

Sample Output

Case 1: 2 4
Case 2: 4 1

HINT

Case 1 的四组解分别是(2,4),(3,4),(4,5),(4,6);
Case 2 的一组解为(4,5,6,7)。
———————————————————————————————
这道题我们发现对于每一个点双联通分量 如果他没有割点 那么他就是一个单独的块 
对于这样的块 我们应该给他设两个出口 防止一个崩了 而对于只有一个联通块的 我们应该设一个不再割点的出口
这样如果出口崩掉了还可以去别的块 而对于有大于一个割点 不用设出口 他可以随便去别的块
然后乘法原理就可以辣 (吐槽:点双写起来贼丑
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using std::max;
using std::min;
const int M=1e3+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m;
int first[M],cnt,buck[M];
struct node{int from,to,next;}e[*M];
void ins(int a,int b){e[++cnt]=(node){a,b,first[a]}; first[a]=cnt;}
void insert(int a,int b){ins(a,b); ins(b,a);}
int dfn[M],low[M],T,iscut[M];
int hc,sz[M],color[M],stk[M],top;
void clear(){
n=; cnt=; T=; hc=; top=;
memset(iscut,,sizeof(iscut));
memset(first,,sizeof(first));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(sz,,sizeof(sz));
memset(color,,sizeof(color));
memset(buck,,sizeof(buck));
}
void tarjan(int x,int fa){
low[x]=dfn[x]=++T;
int child=;
for(int i=first[x];i;i=e[i].next){
int now=e[i].to;
if(!dfn[now]){
stk[++top]=i;
child++;
tarjan(now,x);
low[x]=min(low[x],low[now]);
if(low[now]>=dfn[x]){
iscut[x]=;
hc++;
while(){
int k=stk[top--];
if(color[e[k].from]!=hc){
if(color[e[k].from]) buck[color[e[k].from]]++;
sz[hc]++; color[e[k].from]=hc;
}
if(color[e[k].to]!=hc){
if(color[e[k].to]) buck[color[e[k].to]]++;
sz[hc]++; color[e[k].to]=hc;
}
if(e[k].from==x&&e[k].to==now) break;
}
}
}
else if(dfn[now]<dfn[x]&&now!=fa) stk[++top]=i,low[x]=min(low[x],dfn[now]);
}
if(fa==-&&child==) iscut[x]=;
}
int main(){
int x,y,h=;
while(scanf("%d",&m)==&&m){
++h; clear();
for(int i=;i<=m;i++){
x=read(); y=read();
insert(x,y); n=max(n,max(x,y));
}
for(int i=;i<=n;i++)if(!dfn[i]) tarjan(i,-);
for(int i=;i<=n;i++)if(iscut[i]) buck[color[i]]++;
LL ans=;
int tot=;
for(int i=;i<=hc;i++){
if(buck[i]==) ans*=max(sz[i]-,),tot++;
if(!buck[i]) ans*=sz[i]*(sz[i]-)/,tot+=;
}
printf("Case %d: %d %lld\n",h,tot,ans);
}
return ;
}

bzoj 2730: [HNOI2012]矿场搭建——tarjan求点双的更多相关文章

  1. BZOJ 2730: [HNOI2012]矿场搭建( tarjan )

    先tarjan求出割点.. 割点把图分成了几个双连通分量..只需dfs找出即可. 然后一个bcc有>2个割点, 那么这个bcc就不用建了, 因为一定可以走到其他救援出口. 只有一个割点的bcc就 ...

  2. 【刷题】BZOJ 2730 [HNOI2012]矿场搭建

    Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一 ...

  3. bzoj 2730: [HNOI2012]矿场搭建【tarjan】

    先tarjan找割点和点双连通分量,然后对一个点双,如果没有割点,那么需要建立两个出口(割掉一个另一个备用):如果只有一个割点,出口可以设立在任意一个非割点的地方:如果有两个及以上个割点,就不用建出口 ...

  4. bzoj 2730: [HNOI2012]矿场搭建

    #include<cstdio> #include<cstring> #include<iostream> #define M 508 using namespac ...

  5. 【BZOJ】2730: [HNOI2012]矿场搭建【Tarjan找割点】【分联通块割点个数】

    2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3230  Solved: 1540[Submit][Stat ...

  6. 【BZOJ2730】[HNOI2012]矿场搭建 Tarjan

    [BZOJ2730][HNOI2012]矿场搭建 Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处. ...

  7. BZOJ 2730 矿场搭建 Tarjan求割点

    思路: Tarjan求出来点双&割点 判一判就行了 //By SiriusRen #include <stack> #include <cstdio> #include ...

  8. BZOJ2730 [HNOI2012]矿场搭建 - Tarjan割点

    Solution 输入中没有出现过的矿场点是不用考虑的, 所以不用考虑只有 一个点 的点双联通分量. 要使某个挖矿点倒塌, 相当于割去这个点, 所以我们求一遍割点和点双联通分量. 之后的点双联通分量构 ...

  9. [BZOJ2730][HNOI2012]矿场搭建(求割点)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2730 分析: 如果坍塌的点不是割点,那没什么影响,主要考虑坍塌的点是割点的情况. 显然 ...

随机推荐

  1. ubuntu中下载sublime相关问题

    1.SublimeText3的安装 在网上搜索了一些ubuntu下关于sublime-text-3安装的方法,在这里针对自己尝试的情况进行反馈: 方法一(未成功): 在终端输入以下代码: sudo a ...

  2. 【MVC4升级到MVC5】ASP.Net MVC 4项目升级MVC 5的方法

    1.备份你的项目 2.从Web API升级到Web API 2,修改global.asax,将 ? 1 WebApiConfig.Register(GlobalConfiguration.Config ...

  3. lol人物模型提取(三)

      提取出来的lol人物模型能让你知道一些有趣的信息,比如说给英雄量个身高啥的.   经测量,佐伊的身高应大于1m60,比想象中的着实高不少啊.   然后还应该把这个模型镜像对称一下,在3dsmax里 ...

  4. 团队组队&灰化肥挥发会发黑

    1. 队伍展示 (1. 队名: 灰化肥挥发会发黑 (2. 队员风采 苏叶潇(队长) 201521123114 与众不同,擅长软件测试,对编程望而却步,希望成为测试人员. 宣言:不求最好,只求更好. 李 ...

  5. Vue于React特性简单对比(一)

    一,对象实体对比 vue的对象实体依然是html,而react的对象实体已经变味jsx,一种新的语法结构. vue的html与react的jsx都可以进行拆分,拆分成更细小的组件,组件之间可以传值. ...

  6. python urllib使用

    Urllib是python内置的HTTP请求库包括以下模块urllib.request 请求模块urllib.error 异常处理模块urllib.parse url解析模块urllib.robotp ...

  7. C# 知识回顾 - 你真的懂异常(Exception)吗?

    你真的懂异常(Exception)吗? 目录 异常介绍 异常的特点 怎样使用异常 处理异常的 try-catch-finally 捕获异常的 Catch 块 释放资源的 Finally 块 一.异常介 ...

  8. 发生dev_queue_xmit的时候,全部都是从ip_finish_output中来的吗

    也就是说啊,内核中的收发包的路径,很可能是经理driver_recv --> tcp -->driver_send这样一个过程,是个很长的路径呢...... 从dev_queue_xmit ...

  9. Zookeeper实现分布式集群监控

    Zookeeepr实现分布式集群监控 Zookeeper中节点有两种:临时节点和永久节点 从类型上看节点又可以分为四种节点类型:PERSIST,PERSIST_SEQUENTIAL,EPHEMERAL ...

  10. BZOJ 1297 迷路(矩阵快速幂)

    很容易想到记忆化搜索的算法. 令dp[n][T]为到达n点时时间为T的路径条数.则dp[n][T]=sigma(dp[i][T-G[i][n]]); 但是空间复杂度为O(n*T),时间复杂度O(n*n ...