[Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和
这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊。
这题一看暴力很好打,然而 \(10^{9}\) 的范围注定会卡掉暴力。
所以我们要用除法分块来优化。
由题意得:\(ans = \sum_{i=1}^{n} k \bmod i\)
我们知道,\(a \bmod b = a - b \times \lfloor \frac{a}{b} \rfloor\)
因此,\(ans = \sum_{i=1}^{n} k - i \times \lfloor \frac{k}{i} \rfloor = nk - \sum_{i=1}^{n} i \times \lfloor \frac{k}{i} \rfloor\)
我们用样例来打表找规律,发现 \(\lfloor \frac{k}{i} \rfloor\) 分别在一定的区域内相等,如下表所示:
\(i\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) |
---|---|---|---|---|---|---|---|---|---|---|
\(\lfloor \frac{k}{i} \rfloor\) | \(5\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) |
可见 \(\lfloor \frac{k}{i} \rfloor\) 分成了 \(3\) 块,我们只需要计算 \(n \times k\) 减去每一块的和即可。
首先枚举块的左边界 \(l\),并根据左边界和 \(k\) 计算出右边界 \(r\)。
令 \(t = \lfloor \frac{k}{l} \rfloor\),分两种情况讨论:
\(t \neq 0\),则 \(r = \min (\lfloor \frac{k}{t} \rfloor , n)\);
\(t = 0\),则 \(r = n\)。
(请自行打草稿验证。)
右边界有了,每一块的和也就可以计算出了。
每一块的和 \(=\) 当前块的 \(t\) \(\times\) 当前块元素个数 \(\times\) 当前块 \(i\) 的平均值 \(= t \times (r-l+1) \times (l+r) \div 2\)
当前块处理完后,令 \(l = r + 1\),开始计算下一块,直到计算至 \(n\)。
除法分块就是这样,在莫比乌斯反演优化中也有作用的。
给出最短小精悍的省选题代码。
记得开long long!
#include <algorithm>
#include <cstdio>
using std::min;
long long n,k,ans;
int main(int argc,char *argv[])
{
scanf("%lld %lld",&n,&k);
for(long long l=1,r,t;l<=n;l=r+1)
r=(t=k/l) ? min(k/t,n) : n,ans-=t*(r-l+1)*(l+r)>>1;
printf("%lld\n",ans+n*k);
return 0;
}
谢谢阅读。
[Luogu 2261] CQOI2007 余数求和的更多相关文章
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
- LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...
- Luogu P2261 [CQOI2007]余数求和
最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
随机推荐
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- 【转】AMD 的 CommonJS wrapping
其实本文的标题应该是「为什么我不推荐使用 AMD 的 Simplified CommonJS wrapping」,但太长了不好看,为了美观我只能砍掉一截. 它是什么? 为了复用已有的 CommonJS ...
- 软工2017第五周——个人PSP
10.13 --10.19本周例行报告 1.PSP(personal software process )个人软件过程. 类型 任务 预计时间 开始时间 结束时间 中断时 ...
- TensorFlow安装解惑
本文整理自网络,若有侵犯请告知. 1.安装环境 目前TensorFlow社区推荐的环境是Ubuntu, 但是TensorFlow同时支持Mac,Windows上的安装部署. 2.关于GPU版本 因为深 ...
- Serialable与Parcelable
Serializable和Parcelable比较 Serializable的作用是为了保存对象的属性到本地文件.数据库.网络流.rmi以方便数据传输,当然这种传输可以是程序内的也可以是 ...
- LintCode-54.转换字符串到整数
转换字符串到整数 实现atoi这个函数,将一个字符串转换为整数.如果没有合法的整数,返回0.如果整数超出了32位整数的范围,返回INT_MAX(2147483647)如果是正整数,或者INT_MIN( ...
- LINUX硬件查看命令
1.查看系统PCI设备 lspci lspci -v 显示更详细的PCI设备信息 2.查看CPU信息 more / proc /cpuinfo 3.查看系统内存信息 more /proc /mem ...
- bzoj1968 约数研究
题意 令\(f(i)\)表示\(i\)的约数个数,求\(\Sigma^n_{i=1}f(i)\). 做法 我们直接算每个数的贡献,问题可以转化成每个数在\(1\)到\(n\)中有多少个倍数,累加答案. ...
- [洛谷P4168][Violet]蒲公英
题目大意:有$n(n\leqslant4\times10^4)$个数,$m(m\leqslant5\times10^4)$个询问,每次问区间$[l,r]$内的众数,若相同输出最小的,强制在线. 题解: ...
- 2018牛客多校第六场 I.Team Rocket
题意: 给出n个区间和m个点(点按顺序给出且强制在线).每个区间只会被第一个他包含的点摧毁.问每个点能摧毁多少个区间以及每个区间是被哪个点摧毁的. 题解: 将n个区间按照左端点排序,然后用vector ...