傅里叶变换或者FFT的理论参考:

[1] http://www.dspguide.com/ch12/2.htm

The Scientist and Engineer's Guide to Digital Signal Processing,   By Steven W. Smith, Ph.D.

[2] http://blog.csdn.net/v_JULY_v/article/details/6196862,可当作[1]的中文参考

[3] 任意一本数字信号处理教材,上面都有详细的推导DCT求解转换为FFT求解的过程

[4] TI文档:基于TMS320C64x+DSP的FFT实现。 使用baidu/google可以搜索到。

1. 有关FFT理论的一点小小解释

关于FFT这里只想提到两点:

(1)DFT变换对的表达式(必须记住

          —— 称旋转因子

(2)FFT用途——目标只有一个,加速DFT的计算效率。

DFT计算X(k)需要N^2次复数乘法和N(N-1)次复数加法;FFT将N^2的计算量降为

FFT其实是很难的东西,即使常年在这个领域下打拼的科学家也未必能很好的写出FFT的算法。”——摘自参考上面提供的参考文献[1]

因此,我们不必太过纠结于细节,当明白FFT理论后,将已有的算法挪过来用就OK了,不必为闭着教材写不出FFT而郁闷不堪。

FFT的BASIC程序伪代码如下:

IFFT的BASIC程序伪代码如下(IFFT通过调用FFT计算):

FFT算法的流程图如下图,总结为3过程3循环:

(1)3过程:单点时域分解(倒位序过程) + 单点时域计算单点频谱 + 频域合成

(2)3循环:外循环——分解次数,中循环——sub-DFT运算,内循环——2点蝶形算法

分解过程或者说倒位序的获得参考下图理解:

2. FFT的DSP实现

下面为本人使用C语言实现的FFT及IFFT算法实例,能计算任意以2为对数底的采样点数的FFT,算法参考上面给的流程图。

/*
* zx_fft.h
*
* Created on: 2013-8-5
* Author: monkeyzx
*/ #ifndef ZX_FFT_H_
#define ZX_FFT_H_ typedef float FFT_TYPE; #ifndef PI
#define PI (3.14159265f)
#endif typedef struct complex_st {
FFT_TYPE real;
FFT_TYPE img;
} complex; int fft(complex *x, int N);
int ifft(complex *x, int N);
void zx_fft(void); #endif /* ZX_FFT_H_ */
/*
* zx_fft.c
*
* Implementation of Fast Fourier Transform(FFT)
* and reversal Fast Fourier Transform(IFFT)
*
* Created on: 2013-8-5
* Author: monkeyzx
*/ #include "zx_fft.h"
#include <math.h>
#include <stdlib.h> /*
* Bit Reverse
* === Input ===
* x : complex numbers
* n : nodes of FFT. @N should be power of 2, that is 2^(*)
* l : count by bit of binary format, @l=CEIL{log2(n)}
* === Output ===
* r : results after reversed.
* Note: I use a local variable @temp that result @r can be set
* to @x and won't overlap.
*/
static void BitReverse(complex *x, complex *r, int n, int l)
{
int i = 0;
int j = 0;
short stk = 0;
static complex *temp = 0; temp = (complex *)malloc(sizeof(complex) * n);
if (!temp) {
return;
} for(i=0; i<n; i++) {
stk = 0;
j = 0;
do {
stk |= (i>>(j++)) & 0x01;
if(j<l)
{
stk <<= 1;
}
}while(j<l); if(stk < n) { /* 满足倒位序输出 */
temp[stk] = x[i];
}
}
/* copy @temp to @r */
for (i=0; i<n; i++) {
r[i] = temp[i];
}
free(temp);
} /*
* FFT Algorithm
* === Inputs ===
* x : complex numbers
* N : nodes of FFT. @N should be power of 2, that is 2^(*)
* === Output ===
* the @x contains the result of FFT algorithm, so the original data
* in @x is destroyed, please store them before using FFT.
*/
int fft(complex *x, int N)
{
int i,j,l,ip;
static int M = 0;
static int le,le2;
static FFT_TYPE sR,sI,tR,tI,uR,uI; M = (int)(log(N) / log(2)); /*
* bit reversal sorting
*/
BitReverse(x,x,N,M); /*
* For Loops
*/
for (l=1; l<=M; l++) { /* loop for ceil{log2(N)} */
le = (int)pow(2,l);
le2 = (int)(le / 2);
uR = 1;
uI = 0;
sR = cos(PI / le2);
sI = -sin(PI / le2);
for (j=1; j<=le2; j++) { /* loop for each sub DFT */
//jm1 = j - 1;
for (i=j-1; i<=N-1; i+=le) { /* loop for each butterfly */
ip = i + le2;
tR = x[ip].real * uR - x[ip].img * uI;
tI = x[ip].real * uI + x[ip].img * uR;
x[ip].real = x[i].real - tR;
x[ip].img = x[i].img - tI;
x[i].real += tR;
x[i].img += tI;
} /* Next i */
tR = uR;
uR = tR * sR - uI * sI;
uI = tR * sI + uI *sR;
} /* Next j */
} /* Next l */ return 0;
} /*
* Inverse FFT Algorithm
* === Inputs ===
* x : complex numbers
* N : nodes of FFT. @N should be power of 2, that is 2^(*)
* === Output ===
* the @x contains the result of FFT algorithm, so the original data
* in @x is destroyed, please store them before using FFT.
*/
int ifft(complex *x, int N)
{
int k = 0; for (k=0; k<=N-1; k++) {
x[k].img = -x[k].img;
} fft(x, N); /* using FFT */ for (k=0; k<=N-1; k++) {
x[k].real = x[k].real / N;
x[k].img = -x[k].img / N;
} return 0;
} /*
* Code below is an example of using FFT and IFFT.
*/
#define SAMPLE_NODES (128)
complex x[SAMPLE_NODES];
int INPUT[SAMPLE_NODES];
int OUTPUT[SAMPLE_NODES]; static void MakeInput()
{
int i; for ( i=0;i<SAMPLE_NODES;i++ )
{
x[i].real = sin(PI*2*i/SAMPLE_NODES);
x[i].img = 0.0f;
INPUT[i]=sin(PI*2*i/SAMPLE_NODES)*1024;
}
} static void MakeOutput()
{
int i; for ( i=0;i<SAMPLE_NODES;i++ )
{
OUTPUT[i] = sqrt(x[i].real*x[i].real + x[i].img*x[i].img)*1024;
}
} void zx_fft(void)
{
MakeInput(); fft(x,128);
MakeOutput(); ifft(x,128);
MakeOutput();
}

程序在TMS320C6713上实验,主函数中调用zx_fft()函数即可。

FFT的采样点数为128,输入信号的实数域为正弦信号,虚数域为0,数据精度定义FFT_TYPE为float类型,MakeInput和MakeOutput函数分别用于产生输入数据INPUT和输出数据OUTPUT的函数,便于使用CCS 的Graph功能绘制波形图。这里调试时使用CCS v5中的Tools -> Graph功能得到下面的波形图(怎么用自己琢磨,不会的使用CCS 的Help)。

输入波形

输入信号的频域幅值表示

FFT运算结果

对FFT运算结果逆变换(IFFT)


如何检验运算结果是否正确呢?有几种方法:

(1)使用matlab验证,下面为相同情况的matlab图形验证代码

SAMPLE_NODES = 128;
i = 1:SAMPLE_NODES;
x = sin(pi*2*i / SAMPLE_NODES); subplot(2,2,1); plot(x);title('Inputs');
axis([0 128 -1 1]); y = fft(x, SAMPLE_NODES);
subplot(2,2,2); plot(abs(y));title('FFT');
axis([0 128 0 80]); z = ifft(y, SAMPLE_NODES);
subplot(2,2,3); plot(abs(z));title('IFFT');
axis([0 128 0 1]);

(2)使用IFFT验证:输入信号的FFT获得的信号再IFFT,则的到的信号与原信号相同

可能大家发现输入信号上面的最后IFFT的信号似乎不同,这是因为FFT和IFFT存在精度截断误差(也叫数据截断噪声,意思就是说,我们使用的float数据类型数据位数有限,没法完全保留原始信号的信息)。因此,IFFT之后是复数(数据截断噪声引入了虚数域,只不过值很小),所以在绘图时使用了计算幅值的方法,

C代码中:

OUTPUT[i] = sqrt(x[i].real*x[i].real + x[i].img*x[i].img)*1024;

matlab代码中:

subplot(2,2,3); plot(abs(z));title('IFFT');

所以IFFT的结果将sin函数的负y轴数据翻到了正y轴。另外,在CCS v5的图形中我们将显示信号的幅度放大了1024倍便于观察,而matlab中没有放大。

FFT算法的完整DSP实现的更多相关文章

  1. FFT算法的完整DSP实现(转)

    源:FFT算法的完整DSP实现 傅里叶变换或者FFT的理论参考: [1] http://www.dspguide.com/ch12/2.htm The Scientist and Engineer's ...

  2. FFT算法

    FFT算法的完整DSP实现 傅里叶变换或者FFT的理论参考: [1] http://www.dspguide.com/ch12/2.htm The Scientist and Engineer's G ...

  3. msp430学习笔记-实现开方log等计算及FFT算法(待续)

    MSP430 FFT算法实现 http://bbs.21ic.com/icview-391532-1-1.html http://blog.sina.com.cn/s/blog_6cd2030b010 ...

  4. 基于傅里叶变换的音频重采样算法 (附完整c代码)

    前面有提到音频采样算法: WebRTC 音频采样算法 附完整C++示例代码 简洁明了的插值音频重采样算法例子 (附完整C代码) 近段时间有不少朋友给我写过邮件,说了一些他们使用的情况和问题. 坦白讲, ...

  5. 音频降噪算法 附完整C代码

    降噪是音频图像算法中的必不可少的. 目的肯定是让图片或语音 更加自然平滑,简而言之,美化. 图像算法和音频算法 都有其共通点. 图像是偏向 空间 处理,例如图片中的某个区域. 图像很多时候是以二维数据 ...

  6. mser 最大稳定极值区域(文字区域定位)算法 附完整C代码

    mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. ...

  7. 音频自动增益 与 静音检测 算法 附完整C代码

    前面分享过一个算法<音频增益响度分析 ReplayGain 附完整C代码示例> 主要用于评估一定长度音频的音量强度, 而分析之后,很多类似的需求,肯定是做音频增益,提高音量诸如此类做法. ...

  8. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  9. 用C实现FFT算法

    用C语言编写FFT算法  转http://blog.sina.com.cn/s/blog_65d639d50101buo1.html #include "math.h" #defi ...

随机推荐

  1. uboot makefile构建分析

    前言 几年前分析过uboot的构建及启动过程,做了笔记,但最终没有转为文章.这次又有机会开发嵌入式产品了(之前一年多都是在搞x86 linux),看了下uboot的构建过程,觉得有必要写下整个分析过程 ...

  2. python基础===新式类与经典类

    首先: Python 2.x中默认都是经典类,只有显式继承了object才是新式类 Python 3.x中默认都是新式类,不必显式的继承object 这两种类的区别: 新式类重定义的方法更多,当然这不 ...

  3. 64_d2

    dtc-1.4.4-2.fc26.x86_64.rpm 20-Jun-2017 11:04 89890 dtdinst-20131210-7.fc26.noarch.rpm 11-Feb-2017 0 ...

  4. EasyHook远程进程注入并hook api的实现

    EasyHook远程进程注入并hook api的实现 http://blog.csdn.net/v6543210/article/details/44276155

  5. C基础 工程中常用的排序

    引言 - 从最简单的插入排序开始 很久很久以前, 也许都曾学过那些常用的排序算法. 那时候觉得计算机算法还是有点像数学. 可是脑海里常思考同类问题, 那有什么用呢(屌丝实践派对装逼学院派的深情鄙视). ...

  6. mysql分组取前N记录

    http://blog.csdn.net/acmain_chm/article/details/4126306 http://bbs.csdn.net/topics/390958705 1 我只用到了 ...

  7. centos7.4关闭防火前

    systemctl stop firewalld.service #停止firewallsystemctl disable firewalld.service #禁止firewall开机启动firew ...

  8. JAVA中静态块、静态变量加载顺序详解

    http://blog.csdn.net/mrzhoug/article/details/51581994 一般顺序:静态块(静态变量)——>成员变量——>构造方法——>静态方法

  9. AC日记——贪婪大陆 洛谷 P2184

    贪婪大陆 思路: 树状数组: 跪烂.. 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 int ...

  10. logrotate日志轮转

    1)基本介绍 适合应用服务日志,系统日志按天切割 如果没有日志轮转,日志文件会越来越大 将丢弃系统中最旧的日志文件,以节省空间 logrotate本身不是系统守护进程,它是通过计划任务crond每天执 ...