题目大意:
  在一个立体的空间内有n个点(x,y,z),满足z>=0。
  现在要你放一个体积尽量小的圆锥,把这些点都包住。
  求圆锥的高和底面半径。

思路:
  因为圆锥里面是对称的,因此问题很容易可以转化到一个二维平面上,我们只需要将所有点绕着z轴旋转到xOz平面上即可。
  考虑不同半径时圆锥的体积,不难发现这是一个关于半径r的下凸函数。
  于是我们可以三分求解。
  对于当前分出来的两个半径,我们可以O(n)枚举每个点算出高度,然后看一下哪边体积小就继续分哪边。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const double eps=5e-;
const int N=;
struct Point {
double x,y;
};
Point p[N];
inline double sqr(const double &x) {
return x*x;
}
int n;
inline double calc(const double &r) {
double h=;
for(register int i=;i<n;i++) {
h=std::max(h,(r*p[i].y)/(r-p[i].x));
}
return h;
}
int main() {
for(register int T=getint();T;T--) {
n=getint();
double l=,r=1e4;
for(register int i=;i<n;i++) {
double x,y,z;
scanf("%lf%lf%lf",&x,&y,&z);
p[i]=(Point){sqrt(sqr(x)+sqr(y)),z};
l=std::max(l,p[i].x);
}
while(r-l>eps) {
const double mid1=(l*+r)/,mid2=(l+r*)/;
if(calc(mid1)*sqr(mid1)<calc(mid2)*sqr(mid2)) {
r=mid2;
} else {
l=mid1;
}
}
const double ans=(l+r)/;
printf("%.3f %.3f\n",calc(ans),ans);
}
return ;
}

[HDU3756]Dome of Circus的更多相关文章

  1. 【凸包】【三分】Gym - 101309D - Dome of Circus

    容易发现,圆锥体积和点的具体x.y坐标无关,只与其到z轴的距离sqrt(x*x+y*y)有关. 于是将这些三维的点都投射到二维的xOy平面的第二象限(sqrt(x*x+y*y),z),求个上凸壳,然后 ...

  2. UVa 1473 - Dome of Circus 三分

    把所有的点都映射到XOZ这个平面的第一象限内,则这个三维问题可以转化二维问题: 求一条直线,使所有点在这条直线的下方,直线与X轴和Z轴围成的三角形旋转形成的圆锥体积最小. 这样转化之后可以看出直线的临 ...

  3. HDU 3756 Dome of Circus

    不会做,参见别人的程序: /* 底面为xy平面和轴为z轴的圆锥,给定一些点,使得圆锥覆盖所有点并且体积最小 点都可以投射到xz平面,问题转换为确定一条直线(交x,z与正半轴)使得与x的截距r 和与z轴 ...

  4. UVA 1473 Dome of Circus

    https://cn.vjudge.net/problem/UVA-1473 题目 给出一些点,问包含这些点的最小圆锥(要求顶点在y轴,底面圆心在原点)的体积 题解 因为圆锥对称,所以可以把所有点旋转 ...

  5. hdu3756三分基础题

    Dome of Circus Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. HDU题解索引

    HDU 1000 A + B Problem  I/O HDU 1001 Sum Problem  数学 HDU 1002 A + B Problem II  高精度加法 HDU 1003 Maxsu ...

  7. ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010

    ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...

  8. maven_spring mvc_mina_dome(实体,文件,批传)(spring mina 初学dome)

    看我们群里经常有人在问mina心跳问题,虽然俺是菜鸟可是觉得挺简单的啊,就写了个dome,希望大家多多提意见. 俺做过一段时间网络协议.所以觉得挺简单的吧.哎呀,反正技术就那样了没啥难的. 废话不多说 ...

  9. Java反射机制DOME

    Java反射机制 public class TestHibernate { @Test public void TestHb(){ try { Class cs = Class.forName(&qu ...

随机推荐

  1. linux 服务简介

    Linux服务(Linux services)对于每个应用Linux的用户来说都很重要.关闭不需要的服务,可以让Linux运行的更高效,但并不是所有的Linux服务都可以关闭.今天安装了一次CentO ...

  2. ACE_Reactor类

    .ACE反应器框架简介 反应器(Reactor):用于事件多路分离和分派的体系结构模式 对一个文件描述符指定的文件或设备的操作, 有两种工作方式: 阻塞与非阻塞. 在设计服务端程序时,如果采用阻塞模式 ...

  3. Linux系统编程——进程间通信(System V IPC 对象)

    基本查看命令 ipcs  -m查看共享内存        ipcs -s查看信号量        ipcs -q查看消息队列 ipcrm  -m  id 删除共享内存   -M+key值 ipcrm ...

  4. js cookies的使用及介绍 (非常详细)

    设置cookie 每个cookie都是一个名/值对,可以把下面这样一个字符串赋值给document.cookie:document.cookie="userId=828";如果要一 ...

  5. JavaScript中创建对象的5种模式

    构造函数模式 实现方式: function Person(name, age, job) { this.name = name; this.age = age; this.job = job; thi ...

  6. memcache和redis的对比

    1.memcache a.Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站 ...

  7. HDU-5351

    MZL's Border Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  8. svn命令行

    svn查看某一版本下的某一文件 svn cat -r 版本号 文件的目录 svn 对比两个版本之间的差别 svn diff -r 新版本:旧版本

  9. LeetCode解题报告—— Search in Rotated Sorted Array & Search for a Range & Valid Sudoku

    1. Search in Rotated Sorted Array Suppose an array sorted in ascending order is rotated(轮流,循环) at so ...

  10. hdu 1044(bfs+dfs+剪枝)

    Collect More Jewels Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...