[HDU3756]Dome of Circus
题目大意:
在一个立体的空间内有n个点(x,y,z),满足z>=0。
现在要你放一个体积尽量小的圆锥,把这些点都包住。
求圆锥的高和底面半径。
思路:
因为圆锥里面是对称的,因此问题很容易可以转化到一个二维平面上,我们只需要将所有点绕着z轴旋转到xOz平面上即可。
考虑不同半径时圆锥的体积,不难发现这是一个关于半径r的下凸函数。
于是我们可以三分求解。
对于当前分出来的两个半径,我们可以O(n)枚举每个点算出高度,然后看一下哪边体积小就继续分哪边。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const double eps=5e-;
const int N=;
struct Point {
double x,y;
};
Point p[N];
inline double sqr(const double &x) {
return x*x;
}
int n;
inline double calc(const double &r) {
double h=;
for(register int i=;i<n;i++) {
h=std::max(h,(r*p[i].y)/(r-p[i].x));
}
return h;
}
int main() {
for(register int T=getint();T;T--) {
n=getint();
double l=,r=1e4;
for(register int i=;i<n;i++) {
double x,y,z;
scanf("%lf%lf%lf",&x,&y,&z);
p[i]=(Point){sqrt(sqr(x)+sqr(y)),z};
l=std::max(l,p[i].x);
}
while(r-l>eps) {
const double mid1=(l*+r)/,mid2=(l+r*)/;
if(calc(mid1)*sqr(mid1)<calc(mid2)*sqr(mid2)) {
r=mid2;
} else {
l=mid1;
}
}
const double ans=(l+r)/;
printf("%.3f %.3f\n",calc(ans),ans);
}
return ;
}
[HDU3756]Dome of Circus的更多相关文章
- 【凸包】【三分】Gym - 101309D - Dome of Circus
容易发现,圆锥体积和点的具体x.y坐标无关,只与其到z轴的距离sqrt(x*x+y*y)有关. 于是将这些三维的点都投射到二维的xOy平面的第二象限(sqrt(x*x+y*y),z),求个上凸壳,然后 ...
- UVa 1473 - Dome of Circus 三分
把所有的点都映射到XOZ这个平面的第一象限内,则这个三维问题可以转化二维问题: 求一条直线,使所有点在这条直线的下方,直线与X轴和Z轴围成的三角形旋转形成的圆锥体积最小. 这样转化之后可以看出直线的临 ...
- HDU 3756 Dome of Circus
不会做,参见别人的程序: /* 底面为xy平面和轴为z轴的圆锥,给定一些点,使得圆锥覆盖所有点并且体积最小 点都可以投射到xz平面,问题转换为确定一条直线(交x,z与正半轴)使得与x的截距r 和与z轴 ...
- UVA 1473 Dome of Circus
https://cn.vjudge.net/problem/UVA-1473 题目 给出一些点,问包含这些点的最小圆锥(要求顶点在y轴,底面圆心在原点)的体积 题解 因为圆锥对称,所以可以把所有点旋转 ...
- hdu3756三分基础题
Dome of Circus Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU题解索引
HDU 1000 A + B Problem I/O HDU 1001 Sum Problem 数学 HDU 1002 A + B Problem II 高精度加法 HDU 1003 Maxsu ...
- ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbilisi, November 24, 2010
ACM ICPC 2010–2011, Northeastern European Regional Contest St Petersburg – Barnaul – Tashkent – Tbil ...
- maven_spring mvc_mina_dome(实体,文件,批传)(spring mina 初学dome)
看我们群里经常有人在问mina心跳问题,虽然俺是菜鸟可是觉得挺简单的啊,就写了个dome,希望大家多多提意见. 俺做过一段时间网络协议.所以觉得挺简单的吧.哎呀,反正技术就那样了没啥难的. 废话不多说 ...
- Java反射机制DOME
Java反射机制 public class TestHibernate { @Test public void TestHb(){ try { Class cs = Class.forName(&qu ...
随机推荐
- kaggle比赛流程(转)
一.比赛概述 不同比赛有不同的任务,分类.回归.推荐.排序等.比赛开始后训练集和测试集就会开放下载. 比赛通常持续 2 ~ 3 个月,每个队伍每天可以提交的次数有限,通常为 5 次. 比赛结束前一周是 ...
- 转 TCP中的序号和确认号
在网络分析中,读懂TCP序列号和确认号在的变化趋势,可以帮助我们学习TCP协议以及排查通讯故障,如通过查看序列号和确认号可以确定数据传输是否乱 序.但我在查阅了当前很多资料后发现,它们大多只简单介绍了 ...
- Ubuntu安装pip
首先打开终端 在终端输入:sudo apt-get install python-pip python-dev build-essential [+] 如果需要在Python3下安装pip,那么在py ...
- Caffe 学习笔记1
Caffe 学习笔记1 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和 ...
- Ubuntu 14.04开启ssh服务
sudo apt-get install openssh-server sudo apt-get install openssh-client sudo service ssh restart
- c语言简单实现telnet客户端
c语言简单实现telnet客户端 http://blog.csdn.net/haiwenchen/article/details/69944118
- Oracle 表连接方式
1.嵌套循环联结(NESTED LOOPS)2.哈希联结(HASH JOIN)3.排序合并联结(MERGE JOIN)4.半联结(in/exists)5.反联结(not in/not exists)6 ...
- 【ZJOI2016】大森林
这题理论上可以用ETT,但是用LCT建虚点可以解决这个问题. 对于最晚的操作1建立一个虚点,然后把操作0挂上去. #include<bits/stdc++.h> ; using names ...
- 大小端 Big-Endian 与 Little-Endian
应该说没做底层开发(硬件或驱动)的人很可能不会彻底理解大小端的概念,大小端不是简单的一句“大端在前”还是“小端在前”能够概括的问题.在cpu, 内存, 操作系统, 编译选项, 文件,网络传输中均有大小 ...
- Linux 基础——ls 命令
第二天,继续学习Linux命令... 一.查看文件和目录列表的命令 ls:显示当前目录下的文件和目录,但是不会显示隐藏的文件和目录. ls -a:显示当前目录下的所有文件和目录. ls -l:显示当前 ...