[AGC025D]Choosing Points

题目大意:

输⼊\(n(n\le300),d_1,d_2\),你要找到\(n^2\)个整点\((x,y)\)满⾜\(0\le x,y<2n\)。并且找到的任意两个点距离,既不是\(\sqrt{d_1}\),也不是\(\sqrt{d_2}\)。

思路:

所有距离为\(\sqrt{d_1}\)的点连边,可以得到一个⼆分图。\(d_2\)同理。注意到满足\(a^2+b^2=d\)的\((a,b)\)只有\(\mathcal O(n)\)个,可以得到\(\mathcal O(n^3)\)的二分图染色做法。

源代码:

#include<cmath>
#include<cstdio>
#include<cctype>
#include<vector>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=600;
int n,d1,d2,col[2][N*N];
std::vector<std::pair<int,int>> v[2];
inline int id(const int &x,const int &y) {
return x*N+y;
}
inline bool check(const int &x) {
return 0<=x&&x<n*2;
}
void dfs(const int &x,const int &t) {
const int i=x/N,j=x%N;
for(auto &d:v[t]) {
const int nx=i+d.first,ny=j+d.second;
if(!check(nx)||!check(ny)) continue;
const int y=id(i+d.first,j+d.second);
if(!col[t][y]) {
col[t][y]=col[t][x]==1?2:1;
dfs(y,t);
}
}
}
int main() {
n=getint(),d1=getint(),d2=getint();
for(register int i=0;i<=d1;i++) {
const int j=sqrt(d1-i*i);
if(i*i+j*j!=d1) continue;
v[0].emplace_back(std::make_pair(i,j));
v[0].emplace_back(std::make_pair(-i,j));
v[0].emplace_back(std::make_pair(i,-j));
v[0].emplace_back(std::make_pair(-i,-j));
}
for(register int i=0;i<=d2;i++) {
const int j=sqrt(d2-i*i);
if(i*i+j*j!=d2) continue;
v[1].emplace_back(std::make_pair(i,j));
v[1].emplace_back(std::make_pair(-i,j));
v[1].emplace_back(std::make_pair(i,-j));
v[1].emplace_back(std::make_pair(-i,-j));
}
for(register int i=0;i<n*2;i++) {
for(register int j=0;j<n*2;j++) {
if(!col[0][id(i,j)]) {
col[0][id(i,j)]=1;
dfs(id(i,j),0);
}
if(!col[1][id(i,j)]) {
col[1][id(i,j)]=1;
dfs(id(i,j),1);
}
}
}
for(register int i=0,cnt=0;i<n*2;i++) {
for(register int j=0;j<n*2;j++) {
if(col[0][id(i,j)]==1&&col[1][id(i,j)]==1) {
printf("%d %d\n",i,j);
if(++cnt==n*n) return 0;
}
}
}
}

[AGC025D]Choosing Points的更多相关文章

  1. 「AGC025D」 Choosing Points

    「AGC025D」 Choosing Points 神仙构造题. 首先你会尝试暴力做,先随便选一个点,然后把当前能选得全选上,然后你发现这样样例都过不了. 然后我们可以这样考虑:你把距离为 \(\sq ...

  2. 2018.07.12 atcoder Choosing Points(数学分析好题)

    传送门 一句话题意:给出n,d1,d2" role="presentation" style="position: relative;">n,d ...

  3. AtCoder Grand Contest 025 Problem D - Choosing Points

    题目大意:输入$n,d1,d2$,你要找到$n^2$个整点 x, y 满足$0 \leqslant x, y<2n$.并且找到的任意两个点距离,既不是$\sqrt{d1}$,也不是 $\sqrt ...

  4. atcoder题目合集(持续更新中)

    Choosing Points 数学 Integers on a Tree 构造 Leftmost Ball 计数dp+组合数学 Painting Graphs with AtCoDeer tarja ...

  5. 【AtCoder】AGC025题解

    A - Digits Sum 枚举即可 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii ...

  6. AGC025简要题解

    AGC025简要题解 B RGB Coloring 一道简单题,枚举即可. C Interval Game 考虑可以进行的操作只有两种,即左拉和右拉,连续进行两次相同的操作是没有用的. 左拉时肯定会选 ...

  7. 有理数的稠密性(The rational points are dense on the number axis.)

    每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.

  8. [LeetCode] Max Points on a Line 共线点个数

    Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...

  9. CF219D. Choosing Capital for Treeland [树形DP]

    D. Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes i ...

随机推荐

  1. rabbitmq之核心构架和原理总结(四)

    前言 前面博文已经将安装配置和站点管理介绍了,现在开始正式学习rabbitmq的使用了: rabbitMQ的构架 rabbitmq作为消息队列,一条消息从发布到订阅消费的完整流程为: 消息 --> ...

  2. 【Python学习笔记】colormap的参数及其对应的色条

  3. 关于might_sleep的一点说明【转】

    转自:http://blog.csdn.net/chen_chuang_/article/details/48462575 这个函数我在看代码时基本上是直接忽略的(因为我知道它实际上不干什么事),不过 ...

  4. markdown===在新窗口中打开网址的解决办法,以及其他遗留问题!

    [超链接文字](url){:target="_blank"} 遗留问题: 如何设置图片的尺寸 我的复选框一直不生效,why? 公式 $$ 公式 $$ 不生效 如何设置代码块的背景颜 ...

  5. android 与JS之间的交互

    在页面布局很复杂并且是动态的时候,android本身的控件就变得不是那么地灵活了,只有借助于网页的强大布局能力才能实现,但是在操作html页面的同时也需要与android其它的组件存在交互,比如说 在 ...

  6. edittext 的一个案例

        <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android= ...

  7. [New learn]GCD其他方法的使用

    https://github.com/xufeng79x/GCDDemo 1.简介 在前面的两篇博文中我介绍了GCD的一般使用方法和死锁的分析调查.本博文中继续讲解GCD的其他比较常用的几个使用方法. ...

  8. 怎么删除Windows服务

    1,首先找到服务名字. 2,在cmd中进到c:下面 3,sc delete 名字. 删除成功

  9. python traceback

    1. Python中的异常栈跟踪 之前在做Java的时候,异常对象默认就包含stacktrace相关的信息,通过异常对象的相关方法printStackTrace()和getStackTrace()等方 ...

  10. js-callee,call,apply概念

    JS - caller,callee,call,apply 概念[转载] 在提到上述的概念之前,首先想说说javascript中函数的隐含参数:arguments Arguments : 该对象代表正 ...