文章先由stackoverflow上面的一个问题引起吧,如果使用如下的代码:

@makebold
@makeitalic
def say():
return "Hello"

打印出如下的输出:

<b><i>Hello<i></b>

你会怎么做?最后给出的答案是:

def makebold(fn):
def wrapped():
return "<b>" + fn() + "</b>"
return wrapped def makeitalic(fn):
def wrapped():
return "<i>" + fn() + "</i>"
return wrapped @makebold
@makeitalic
def hello():
return "hello world" print hello() ## 返回 <b><i>hello world</i></b>

现在我们来看看如何从一些最基础的方式来理解Python的装饰器。英文讨论参考  Here 。
1.1. 需求是怎么来的?

装饰器是一个很著名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。

装饰器的定义很是抽象,我们来看一个小例子。

def foo():
print 'in foo()'
foo()

这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:

import time
def foo():
start = time.clock()
print 'in foo()'
end = time.clock()
print 'used:', end - start foo()

很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。

怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?
1.2. 以不变应万变,是变也

还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!

import time

def foo():
print 'in foo()' def timeit(func):
start = time.clock()
func()
end =time.clock()
print 'used:', end - start timeit(foo)

看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个情况,比如:这个函数是你交给别人使用的。
1.3. 最大限度地少改动!

既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!

#-*- coding: UTF-8 -*-
import time def foo():
print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法
def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start # 将包装后的函数返回
return wrapper foo = timeit(foo)
foo()

这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。
这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)

上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。

import time

def timeit(func):
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start
return wrapper @timeit
def foo():
print 'in foo()' foo()

重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。

1.4 最后回答前面提到的问题:

# 装饰器makebold用于转换为粗体
def makebold(fn):
# 结果返回该函数
def wrapper():
# 插入一些执行前后的代码
return "<b>" + fn() + "</b>"
return wrapper # 装饰器makeitalic用于转换为斜体
def makeitalic(fn):
# 结果返回该函数
def wrapper():
# 插入一些执行前后的代码
return "<i>" + fn() + "</i>"
return wrapper
# 注意顺序
@makebold
@makeitalic
def say():
return "hello" print say()
#输出: <b><i>hello</i></b> # 等同于
def say():
return "hello"
say = makebold(makeitalic(say)) print say()
#输出: <b><i>hello</i></b>

2、装饰器的种类

2.1 无参数装饰器

def deco(func):
print func
return func
@deco
def foo():pass
foo()

第一个函数deco是装饰函数,它的参数就是被装饰的函数对象。我们可以在deco函数内对传入的函数对象做一番“装饰”,然后返回这个对象(记住一定要返回 ,不然外面调用foo的地方将会无函数可用。实际上此时foo=deco(foo)

我写了个小例子,检查函数有没有说明文档:

def deco_functionNeedDoc(func):
if func.__doc__ == None :
print func, "has no __doc__, it's a bad habit."
else:
print func, ':', func.__doc__, '.'
return func
@deco_functionNeedDoc
def f():
print 'f() Do something'
@deco_functionNeedDoc
def g():
'I have a __doc__'
print 'g() Do something'
f()
g()

2.2 有参数装饰器

def decomaker(arg):
'通常对arg会有一定的要求'
"""由于有参数的decorator函数在调用时只会使用应用时的参数
而不接收被装饰的函数做为参数,所以必须在其内部再创建
一个函数
"""
def newDeco(func): #定义一个新的decorator函数
print func, arg
return func
return newDeco
@decomaker(deco_args)
def foo():pass
foo()

第一个函数decomaker是装饰函数,它的参数是用来加强“加强装饰”的。由于此函数并非被装饰的函数对象,所以在内部必须至少创建一个接受被装饰函数的函数,然后返回这个对象(实际上此时foo=decomaker(arg)(foo))

这个我还真想不出什么好例子,还是见识少啊,只好借用同步锁的例子了:

def synchronized(lock):
"""锁同步装饰方法
!lock必须实现了acquire和release方法
"""
def sync_with_lock(func):
def new_func(*args, **kwargs):
lock.acquire()
try:
return func(*args, **kwargs)
finally:
lock.release()
new_func.func_name = func.func_name
new_func.__doc__ = func.__doc__
return new_func
return sync_with_lock
@synchronized(__locker)
def update(data):
"""更新计划任务"""
tasks = self.get_tasks()
delete_task = None
for task in tasks:
if task[PLANTASK.ID] == data[PLANTASK.ID]:
tasks.insert(tasks.index(task), data)
tasks.remove(task)
delete_task = task
r, msg = self._refresh(tasks, delete_task)
return r, msg, data[PLANTASK.ID]

调用时还是updae(data)。

同时还可以将多个装饰器组合 使用,注意调用顺序:

@synchronized(__locker)
@deco_functionNeedDoc
def f():
print 'f() Do something'

2.3 内置的装饰器

内置的装饰器有三个,分别是staticmethod、classmethod和property,作用分别是把类中定义的实例方法变成静态方法、类方法和类属性。由于模块里可以定义函数,所以静态方法和类方法的用处并不是太多,除非你想要完全的面向对象编程。而属性也不是不可或缺的,Java没有属性也一样活得很滋润。从我个人的Python经验来看,我没有使用过property,使用staticmethod和classmethod的频率也非常低。

2.4 装饰器进阶

http://www.cnblogs.com/JohnABC/p/4186209.html

具体请参考: http://www.cnblogs.com/huxi/archive/2011/03/01/1967600.html
转自: http://www.open-open.com/lib/view/open1374584644558.html

Python-理解装饰器的更多相关文章

  1. [python]在场景中理解装饰器

    原来我也自己通过查资料,来学习python的装饰器,但是效果不好.因为没有接触过需要用到装饰器的场景,所以 一起的资料都只停留在纸面上,但是今天偶然看到了vimer的这篇文章:http://www.v ...

  2. 理解Python中的装饰器//这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档

    转自:http://www.cnblogs.com/rollenholt/archive/2012/05/02/2479833.html 这篇文章将python的装饰器来龙去脉说的很清楚,故转过来存档 ...

  3. 【转】详解Python的装饰器

    原文链接:http://python.jobbole.com/86717/ Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现 ...

  4. python基础—装饰器

    python基础-装饰器 定义:一个函数,可以接受一个函数作为参数,对该函数进行一些包装,不改变函数的本身. def foo(): return 123 a=foo(); b=foo; print(a ...

  5. 详解Python的装饰器

    Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数. def sa ...

  6. 关于python的装饰器(初解)

    在python中,装饰器(decorator)是一个主要的函数,在工作中,有了装饰器简直如虎添翼,许多公司面试题也会考装饰器,而装饰器的意思又很难让人理解. python中,装饰器是一个帮函数动态增加 ...

  7. 【转】Python之装饰器

    [转]Python之装饰器 本节内容 必要知识回顾 情景模拟 装饰器的概念及实现原理 回马枪(带参数的装饰器) 一. 必要知识回顾 在开始说装饰器之前,需要大家熟悉之前说过的相关知识点: 函数即“变量 ...

  8. Python 函数装饰器

    首次接触到装饰器的概念,太菜啦! Python 装饰器可以大大节省代码的编写量,提升代码的重复使用率.函数装饰器其本质也是一个函数,我们可以把它理解为函数中定义了一个子函数. 例如我们有这么一个需求, ...

  9. 如何用python的装饰器定义一个像C++一样的强类型函数

        Python作为一个动态的脚本语言,其函数在定义时是不需要指出参数的类型,也不需要指出函数是否有返回值.本文将介绍如何使用python的装饰器来定义一个像C++那样的强类型函数.接下去,先介绍 ...

  10. Python学习---装饰器的学习1210

    装饰器的基础 学习前提: 作用域 + 函数的理解 + 闭包  [学习,理解] 代码编写原则: 对修改开放对扩展开放 装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前 ...

随机推荐

  1. [Codeforces 1053B] Vasya and Good Sequences

    Link: Codeforces 1053B 传送门 Solution: 其实就是暴力 观察需要满足的条件: 1.个数和为偶数 2.最大个数不大于其它所有个数的和 如果只有第一个条件记录前缀和的奇偶性 ...

  2. [TCO2013]TrickyInequality

    $\newcommand{stirf}[2]{{{#1}\brack{#2}}}$$\newcommand{stirs}[2]{{{#1}\brace{#2}}}$题意:$\sum\limits_{i ...

  3. 【递推】【推导】【乘法逆元】UVA - 11174 - Stand in a Line

    http://blog.csdn.net/u011915301/article/details/43883039 依旧是<训练指南>上的一道例题.书上讲的比较抽象,下面就把解法具体一下.因 ...

  4. 【状态压缩DP】NOIP2005-river过河

    [问题描述] 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看 ...

  5. [BZOJ1002](FJOI 2007) 轮状病毒

    [题目描述] 给定n(N<=100),编程计算有多少个不同的n轮状病毒. [输入格式] 第一行有1个正整数n. [输出格式] 将编程计算出的不同的n轮状病毒数输出 [样例输入] 3 [样例输出] ...

  6. for循环、for-in、forEach、for-of四大循环

    平时自己在写一些小栗子的时候,用到的基本上是for循环,因为在学专业课(C,C++,JAVA,...)的时候用的最多的就是for循环,不过for循环的效率也是比较高的. 但是for循环在写的时候,涉及 ...

  7. 使用参数化查询防止SQL注入漏洞

    参数化查询防止SQL注入漏洞 看别人的登录注册sql语句有没漏洞即可 Where  name=‘admin’ or ‘1=1’ and password=’123’; 可以Or ‘1=1’就是漏洞 h ...

  8. TDiocpCoderTcpServer 使用

    TDiocpCoderTcpServer 使用 uses diocp_coder_tcpServer,utils_zipTools,diocp_tcp_server,diocp_task // 创建T ...

  9. [Git] git shortlog 找出最懒的程序员

    转载:http://blog.csdn.net/qinjienj/article/details/7795802 场景假设:一个开发小组有10个程序员,他们用 Git 做版本控制,某一天程序员A pu ...

  10. Openshift template的使用

    1.template的定义 官方对template的定义是 A template describes a set of objects that can be parameterized and pr ...