python实战===老司机奇技淫巧系列之字符转换成图片
先放两张效果图:
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAYEBQYFBAYGBQYHBwYIChAKCgkJChQODwwQFxQYGBcUFhYaHSUfGhsjHBYWICwgIyYnKSopGR8tMC0oMCUoKSj/2wBDAQcHBwoIChMKChMoGhYaKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCj/wAARCALqBAADAREAAhEBAxEB/8QAHQABAAIDAAMBAAAAAAAAAAAAAAcIBAUGAgMJAf/EAFsQAAIBAwIEAwUEBQcHBwgJBQABAgMEBQYRBxIhMQgTQSIyUWGBFBVCcSNSYpGhFiRygpKisTNDU3OTwcIXNERjg7KzGDdkdaPD0/AlJzY4VVaV0dJ0hJS04f/EABcBAQEBAQAAAAAAAAAAAAAAAAACAQP/xAAgEQEBAQEBAQEBAQADAQAAAAAAARECMSESQVEiMmFx/9oADAMBAAIRAxEAPwC1IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5vW+rcTozT9xmM7XdK1pezCEFzVK1R+7Tpx/FJ7P5LZttJNoKs6v8Q+r8vXlDAq3wVlu+Xy4Rr15Lb8U5pxXx9mK2+LJ1c5Rvfa01Xfym73VGerqT3cZZCqo/SKkkvojNb+Y16zWWTTWXyaa6ra9q9P7w1uRnUNYapt48tvqjUFFdtqeTrx/wCMafmNnYcTtdWG3k6tzMvh59dVv++mNZ+Y3tnx14jW9VSnn6dzBfgr2FBr98Yxf8TdPzHQ2fiV1pRlBXOOwFzTXvbUatKT+qqNfwGs/LvdK+JjC3lVUdUYm5xG72VzQn9qpLp1ckoqcfpGRus/NThg81jc9j4X+Gv6F/ZVHtGtb1FOO/qt12a9U+qNS2wAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBW/iD4kaFhf3NjorH0cl5MnB391UaoTkn18uEes4/tc0d+uya2ZlqpzqPr3xE6+uW3RqYe039KNk3t/bnIzW/li0vEBxChLeeSsKi27SsYbfwaGn5bOj4ktc01tK30/VfxnZ1V/hVQ0/DhuIPEXUmvatt9/XdH7LbSc6Npa0vKpRm1s5Nbtye3Tdt7bvbbd7rdbOccgYoAAAAAAAA2On87ldOX/23AZG6x1105qltUcedJ77TXaa39JJoayzUuYPxJavsqMKOUsMVlHGO3nuM7epJ/GXK3F/SKN1N5bGXidz/AJsXHT2KVP8AEncVW3+T26fuGn5bGx8UVxFQWQ0lCfX2p22Q2aXyjKn/AMRus/KRNLcfNC5urGjc3tfD3EmoqOSpqnBv/WxcoJf0pIayyxKtCtTr0oVaM41KVRKUJwacZJ9U013RrGQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGwG4ADkr7X2mMZq2hpnI5q2t81WjGULepzJe1vyxc9uRSe3SLab3Wy6rcOt3AAAG4ADmeJNepbcO9UXFCbp1aWLuqkJrpyyVGTTFbPXzyoLahTXwiv8CHV5gAAAAAAAAAAAAAAAAABt02A67h9xE1JoS6jLCXz+wuXNUx9xvO3qfH2fwPt7Udn0W+66DU3mLe8LOKOH4iWUlY72eXoQVS4x9aac4LonKD/ABw3e3Ml03W6TaReosxIoYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsBS3j9r/UOR4g5jE0cjfWWKx1b7LStLatKlGe0YtznytObb3a36Jbberc2r5iZPCzpaeM0PLP30qtS+zU/Mg6spScLeDapx9pvu+ae67qUfgbE1Nz7M1iiPiFUp8Z9VefGLbq0Ft33j9npcv8Nia6c+Njobjnq7SllSx9WdvmcfSXLThf83m0o9doxqxe7X9JS2S2TSGsvLrKvif1A4/otOYmL37yuKjX+CGn5a2v4lta1JSVHGaeowa6b0a1SS/9ol/AaflzGW42cQ8k5qWoZWlGXanZW1Kly/lLlcv7w1v5c3V15rOrLmnrHUm/7OSqxX7k0ZrcjEyGqdR5K0qWmT1HnL60qe/QuchWqU5fnFy2f1GmRqA0AAAAAAAAAAAAAAAAAAAABk4vI3uJydrkcXc1bS+tZ+ZRr0ZbSg/l8mujT6NPZ7hlmrhcEuMVprijDE5lUrTUlODagulO8il1nT+Ekusod0uq3W+1SudmJlRrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApj4rdOTxXEd5SkpKhmrVVVJ7JKvSSpzS/q+VL+syavm/wAWU4OZOxyvDPTdTFV4VqVDH0LWcYvd0qlOnGMqcvhJNf7+zRSa7C9vLaxtp3N/c0ba3h71StNQjH823sGKR+IjLYLN8Trm/wBNXNO7pTtaULu4pPmpzrw5o+xLtJKCgt106fmTXTnxGpigAAAAAAAAAAAAAAAAAAAAAAAAAAAADypVKlCtSr29WpRr0ZxqUqtKThOnOL3jKMl1TT6poMs1b3gNxihrChTwepKlOjqWlF+XUSUIX8UusopdFUS6ygu/vR6bqNSudmJxRrAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIk8SWGwmU4bXVzmrunYXFhPzrGvKHNKVbZpUlHvLnXTZdukvwmVs9UnjBe9s4Ta68smn9Wu5Lo/HSpybc4Kcn6z9p/vYMewNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD9pzqUq1OtQqVKValNVKdWnJxnTknupRa6pp9U0BbjgZxpo6opUMFqqtSt9Qx2hRuHtCF/8ADb0jU+Mez7x+CqVzvOJ3NSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYl1cUbS2rV7itToW9GDqVKtSSjGEUt3KTfRJLq2wItzPiA0DjIVFSyVzk6tNuLhY2k5ptfCclGD/ADT2M1uI/wBTeJ2pKMqWltPcj6ctxk6q6fH9FTfX+2hrZygfV2rc7rG+jeakyNW+qw3VKMko06Ke26hTXsx32W723e3Vsm1cmNIGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPycVKLjJJp+jAsn4Z+KslUo6N1Ndym5ezirivJtv/ANHlJ/3N/wCjv7qKlc+os8jUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIM8Xl1cW/C+zo0akoUbvLUKNxFdp01CpNRfy54Qf0RlVz6qF3JdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE3FqUW4yTTTT2aa7NP0YFkuF/iJpWuPpY3X1O6qVaSUKeToU/MdSP/WwXXmW3vR339Un3qVzvKa9H8R9J6xru30/mre5uY9XbTUqNZrbdtU5qMml6tJo1OOzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANXn8rY4XEXuSy1zC1sbWm6tatPtGK/Lq38EureyXUDH0jmY6k03jcvToVLelfUI3FOnUknJQl1jvt03a2bXpvsBy3H3BvUHCbUFCmou4tqH26i2t2pUWqjS+bjGUf6wrYonGSkk4vdNboh1foAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPKlUnQrUq1Kc6dalNVKdSEnGUJJ7qUWuqaa7oCzHBDjrK7lb6e11cLz5NQtcrNpKpv2hW9FL0U+z6b7Pq6lc7yssakAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArp4ws1dW2D09haMnG1yFxWuK+0muZUVDli/iuaqpbfGK+BlVz6kXgBkqeU4Q6aqQW0qFr9knHdNxlSk6b3/PlT/Jo1ldvmbq1ssTe3WQcVZUKFSrXcuypxi3Lf5bJhj5tW3/ADel/QX+BFdZ49gaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5UYRqVacJ1qdCE5xjKrUUnCmm0nKXKm9l3eyb2XQCzGk/DlpjJ4mF3carvcvQqreFfGOjSoyXqk2qjfw7orHP8AVT7pbEU9PYG0xVG8vLyjax5Kda8q+ZVcd20nLZb7LovkkaluQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIc8SmhrnV2jqN1iqE7jL4icrijRhFynWpSW1WnFesmlGSXVtw2S6mVvNxXzgnxYueHlxcUJ2zyGBvZqrWoU5KNSnU6J1Ke/RtxSTi9t+VdVt1yXF2b9jv+M3HPF6k0LLCaVhfU62S/R3k7im6To0Fs5RTT2bn7vTdcvN8Ubamcq7EugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmYnLZHC3ErjC5G9x1xJbSqWdeVFy9evK1v9dxrMSlpLxBa1wk4Qyk7XO2aaThcwVGsopdo1YLbf5yjI3U3lYnhtxc0xrqULWyuJ2WYa3dhebQqS2W7dNr2ai6P3Xvst2kVqbMSSGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBBXFvgRY6qvLnM6aq0cXma0vMr0pp/ZrqXrKW3WnN93JJptdU22zLFS4qlnsTeYHNXmKylOEL+0n5danCrCqoy2T25otp91812ezTRK5demNjeSx87+NpdSsIVFRldKjJ0Y1H2g6m3KpfLfcYbGOGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMjHWjv8lZ2UatKjK6r06Cq1XtCm5zUeaXyW+7/ACDKn3LeGDLUqCliNT2N5X3607y0nbx+koyn8/wm4n9If1hobVGiq0J5/FXNnSjNOneQfPR5t3yuNWPSMum6T2l8hjdlTJwY491rWrbYPX9x5ts0qdDMT96m+yVx8U+3md0/e33clsqbytFTnGpBThJSjJbqSe6a+KNS9oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcnxR1G9JaBzmdht51pbydDmW6daTUKaa9VzyiCKbcHND1+IWtoWl5UrTsKCd1krlyk5zi5e6pfr1Jb9d99uZ+hM+uluRbfijhMdb8GtUYy2tKNGwtsPcSo0KcVGEHTpucNl8pRTKc1DU+ZJrs+pDsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8akVODjJbprZgXT8P8AxLp6309HHZK4h/KXHU4xuIye0rmmtkq6T779FLbtL4KUSpXKzEq3dvRu7arb3VGFehVi4VKVSKlGcX0aafRp/A1itfGPgBGjQuc3oGhLaG9SviFvLmX4nb/P18t9H1UdukXlip00Xh64vPTtzQ0xqi55cJOXl2l1Wb/mc29lCbfak303fuPvtHflSts/sW7RqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARR4nlUfBfNOD2hGraufzj9op/79jK2eo78G1/YR/lTj2lDK1JUbndv/AClBJxW39GTe/wDTQjek4cV3/wDVbrF/DDXv/gTNS+fMVyxSXotiHZ+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZWKyN7h8pa5PE3dWzyFrPzKFxSe0oPs/k01umn0abT6BlmrqcE+KVtxDw8qN15VpqGzind2kX0nHsq1LfvBvo11cX0feLdSudmJSNYrF4meFVNUrnWenbZwkt55e1px3jOPrcKK7Nfj26Ne13Um8sVzf8AW88MXEmWcxy0pma7nk8fSU7KtLfe4tlsuVv1nDdL5xae3STEp1MWBNSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHN8QtO09WaLzOCqSjD7dbSpQnJbqFTvCT+Skov6AU44S5a64ecYrCnnoVMfKNaWNyNOpJR8uNTZJye+3IpqnPm32cVuiZ8XfsXN1zj6uX0VqDG0E5VrzH3FtBL1lOlKK/iykR86qDcqNNvu4pv9xDq8w0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2OnM1f6bzlnl8RW8m/tJ89KT91+jjJesZLdNfBiMs1fHhtrKy15pW3zePj5bqN07i3clKVvWjtzU2/XbdNPZbpp7Lctyvx1FelCrSnTqwjOnNOMoyW6kn3TXwApBxJwN/wi4r07nAqVK3p1Ff4ubcnHy92pUJPfqlvKm1vu4Si33J8XPsxcnR2ftNU6Yxubx73tr6jGtFbpuDfvQe3rF7xfzTKQ3gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4nXXDjS+ueWWoMZGpdxh5dO7pSdKtCPXpzx7rq/Zluur6ButnpTT9zp2zp2LzmRylpRgoUvvBU51YJLZJ1IRi5L+km/mGKlcUODOpsBnsvd4XD1L/AO4lWt52W1SVKnN8yg6SfP7O7W6TWy36E2Ok6RNGSkt09zFP0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwnUhF7TnCL+DkkGJK4EcQFoLWcZXlTlwmScbe9T7U+vsVv6rfX9mUujaRsrOovQinNEXiW0itTcN7m+t6Slk8LvfUH03dNL9NDf4OCb2XdwiZWy44nwg6qdezy+lripzfZ2r+zTk2/Lm1Gql6JKfLL86jEb1FlDUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgIE8R3CuyzWDvNVYO1hQztjTde6jSikr2jHdz5l61IrdqXdpcr39nlyxUuKlJppNPdPsyXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8k9ot7b7Lfb4gXh4QaI01acMNPv7mx9xUv8AH0bm5q17eFSVadWmpy5nJbtbyaSfZbIpytQr4jeE1ppeMdR6atlQxFeqoXlnBNwtqkn7M4fCnJ+y49FFuO3R7LLFc3+JW8NGs5an4fxx13Uc8nhHG0qN950Wv0M30/VTh6tum2+5sTZiYJwjODjOKlFrZprdNfA1imOg6D4b+JOjhnUnC0jfzx0Yqe7nQuI70OZ/nKi/zRP9XfsXSXYpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxkk000mn3TA+curMVDB6tzuIpKTpY+/r2tNy7uEajUX/Z5SK6zxqw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC73htzSzXCLCqVWNS4x6nj6qX4XSk1Bf7N039So5WY7bWGBt9T6WyuEvNvJvredBya35G17Ml84vZr5o1imvh61DW0pxVx9G956VPIylirunJdY1JS2h07JqrGK39FJkxfX2LzehSFVPFPZ/wAnOI+ldV275ZVlTTcV/nbatCak38XGe39Qyqn34tWjUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQXrXxEaewObVhirWrmFSrKF3dUpqFGlFS2m4Pq6kkk+yUf2mZrfym6nONalGdOUZQkt4yi900+zTNYobxvnQqcXtVu1adNXuz2/XVOCn/eTJrpz44cxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFifB1qCVLMag05VlN069GGQop+7GUGqdT6tSpf2So59Rad9jUqA8ZsdUwfFjVdC3qyVWN+7yk4vZwdVRrx2+Gzn/Am+uk+xebSeWjntM4jMU4KEchaUrpQT35eeClt9N9inNFHi4w0sjwrV7T5Yzx19RrOTXXknvRa/fUi/oZWxN/qawAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABugG4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxL63+2Wle38ydLzacqfPTe0o7prdP0a3A+eOr9M5LR+fucFmqHl3Nv0T29ivT7RqwfrCW306p7NNEV1l+J94T8dcVhOGssdqSpUeZw9DyrKlyt/bqaW1KKkltGS6Qe/olLr12qVF5+q43t3cZC+ur6+qebeXVadxXqbbc1ScnKT/AHtk1c+PSGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASV4b7qpbcZ9PKE+WncK5oVF+snQnJL+1CJsT14vN6FOak/ijsvsnGG+rpdbyytq7/ADUZU/8A3ZNXysP4aruV1wZ0/GpNzqW/n27b9FCvNRX9nlNib66fiXpx6t0Xf4VbfzmVF9Xt7lWE/wDhNJ8dUgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANblcnaYbG18hlK9K1srePPVr1ZqMYL5v89l82wK4a+8SlaVetaaHx9NUItx+8b6Dbn3W9Oj029GnN+vWJlqpyiPI8VNe5Cqqlzq3KRmvS2lG3j/ZhFIzVfmN/prjxrvC1ofaMhSy9rHZOhf0Yttb9dqkFGW+3q+b8hp+VmuFPE/EcRLCpKz5rPKW8VK5x9WSlOCf4oyXvw36cyS+aW6NlRZiRDWAAAAAAAAABuA3AwrrJ2No2ru8tqDS3aq1Yx2X1YGNDPYqvurfJWNaS/DTuYNv4Lv6gaXJZzVCkvubScbmD/Fd5SlQTXy5I1A1qchqXiLbx3ocP8dcv9WlqCO/96jEDlcvxa1/hG1kuEeScV1c7XIfaIxXzdOlJfxMJGsxXie09VhyZbAZmzr78soUHSr8r9d05Rl/dGt/LvdP8ZdBZuapW+orW2r7JulfqVq0/hvUSTf5NmsxIFOpCtTjOElKEkpRlF7pp9mmGPcAAAAAAAAAAAAAAAA5HX2hcHrrFxss9auo6fM6FzSfJXt5NbN05+m+y3T3T2W6ewbLinvGHhnd8N8pZU6uQpZCxv41J21VQdOouTk5ozj1W6547NPr16LsTYudaj8xQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADvuAacuMWl1HpL7RN777dFQq7mxPXi+S7IpzU68XnTirYftYWi//b10T0vhL3hOc3wnjz77feFzy7r05l/v3Nib6mc1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYmQu6GPsbi9va0KNrb05Vq1Sb2jCEVvKT+SSbAo3xl4mX3ETNLllUt9PWtRuys9/efbzqvxqNN7LtBPZdXJubXSc45rR2ks7rHJSsdOY6re1obOrNNQpUU99nOb6R7PZd3t0TMxtuJqxfhfyta25stqmxtLj/R2tlO4il/SlOH/AHTfyj9PDLeF/M0aLlitTY+7qrtC5tJ26f8AWjKe37hjf0ifTeTy3DLiLbXd7b1rW9xdz5d7bbpuVJ7KpD4SUoPeL6r3ZL0Hjb9j6BwacU000+zXqU5vIAAAAAPRXrQo0p1Ks4wpwTlKUnsopd236ICLdWceND4CU6dDIVMzdRezpYyHnRX/AGjap/uk38jNbJUSah8TOeud46fwePx9LZp1LypK5n67SSjyRT7dHzfUzVflHOX4v67zW1G41ZfQ3fsxx/Jbv8l5UVJ/vY2mRqrjE6v1JPzrjH6ozE5deepQurjf96e4+t+R6/5Aaq//ACXqH/8AR6//APAfTeXqudE6itafmXWk83Qp+squKrRS+rgPpvLT29eeMu3K3r1rC6pvryTlQnF/RpmfW/HcYDi1rvBTTtdS31xTbTdK/au4yXw3qbyS/KSN1n5iZdD+Ja1rVYW2tMY7Jt7O9x6lUpLr3lSe84pL9Vz/ACN1N5TDWx+juI+Ip3da1xGfsakXGncckKrh8VGa9qEvit00alFGtfDPiLynVraPyVbGVnu1a3m9xbvp0ipP24rf1bn+RmKnSHL/AB3EXg5dOVGvkMVaufs17ap51lWk90m004b9O04xl8jPsb8qU9BeJSMp0rTXNh5e7UfvCxi3FdlvOi95L1bcHL5RRusvKweBzeMz2Lp5HC39vf2VX3a1CalHf4Pbs16p9V6mpbYAAAAAAAAAAAAAACu/jJxaq6b03lt3vaX07VpfCtTb3/fSS+plVyquS6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJI8ONOVTjZpraO8af2qcvklbVF/jJGxPXi9HoU5qb+LSrGrxVt4xe7pYihB/JurWl/vRNXwnPwz2n2bg1g5uDhO5lcXDTW26lXnyv6xUTYm+pVNYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFdvF1q2VnhMbpa1q7VMlJ3N2k+vkU2uWLW3aU+v/AGbXqZarmIC4Z6MvdeastsPYy8qm0613ct7q3oppSlt6ybajFerfXomyZF24vTpXTeK0phqGLwdrC2s6S32XWU5es5vvKT9Wy3JvQAFKvFjZUrXird1qcUp3eNoV5tesl5lP/CEf3GVc8W00DWnc6F07XrturVxttObfq3Si2bE310IYAAG4EFcUOP8Ah9PVK+O0rGlmsvB8s6vP/NKEtn3kutRrp7MenV7yTWxlqpzqAq91xB4xZOdOP3hmoQn1o0kqNnbvq0n2pxe3rJuT29TPtb8iTtJeGSvUhCrq/OeStnvaYuCbS9P0s1tv8lD6m4XpLWB4KaBwqUqenba9rKPLKrkXK6cvnyzbivokanXeY3HWWMoKjjbS3tKK7U6FKNOP7kkGM7b8wABoDByeNsspbu3yVnbXlu+9K4pRqRf0kmgI81LwM0FnI1ZRwscZcTW3nYybt3H8oL9H++LGNlxD2svDTmbKNW40nlKGUpreUbS8SoVtvSKmvYk/zUETip0iahX1bw01C/LeR0/lfWE4csa8VuusXvCrHffr1XzHjflWM4Z+IfF5eVKx1pSo4i/l7Mb2Df2So9+nM31pPr+JuPRvmXY2VN5xOdSnb5GylCpGncWteG0oySnCpCS9V2aaZqUDcTfDxjclCtf6IqU8XfP2nYVG/stV77vl9aT6vtvHolsu5lip1ivthf6s4Xaqq06ErvDZint59vUipU60E2lzR6wqQ77SW/xTTM8V8q1PCLjPidcxo4zIqGK1Hy/82lP9Fctd3Rk+/wAeR+0l+sk2bKizEvGsAAAAAAAAAAAAA4XjTpipqzhrm8XbQc710fPtUkm3WptTjFb/AKzjy/1g2KD05qpCMo9pLdEOryAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABM3hLt43HFmtOXvW2Kr1V+bqUof4SZsR0uU+xSFDOPGUeoOMOo6lh5lbkrwx9CCju3OnGNNpL13qc2xN9dJ8i7OkMPHT2lsPhqclONhaUrXnS25+SCi5fVrf6lObdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9gKQ+Jy/rXvGXL0ar3p2NvbWtL5RdNVX/Gqya6cpq8JWn4Y/h5cZpqLr5i6nJTj/oqMnThH+0qr/rGxPV+p0NS1WAy1rncRZ5THVVVtLumqtKa+D+Pwa7NfFAbCpONOnKc5KMYptyk9kl8WBSLibfS4q8a52mBn51vdVaWNs6qjzJ0ob+ZV6fgW9We/6qTJ9q58i7VpQpWtrStaMFCjSgqcIrtGKWyX7kUhkAANRqHOY/T2LuMnmr2jZWFtHmq1qr2S+SXdt9klu2+iTYFTOJ/F/O8Qr7+Tmk7a8tsTct0YW1BN3d/unup8vuw2/AvTfme3RTauTPXZcL/DpShGjkNfT8yrsnHE29T9HDp2q1I+8+vux2j07yTNkZeljMZYWmNsaNpjrWhaW1GPLToUKapwgvgorojUswABjXd1Qs7apcXdanQoU1zTq1ZqMYr4tvogOAzPGnh9iJ+VW1Na3NVLdRsYzut/61NSj+9jW45Ov4mdF05uFPH6hrpfip2lNJ/2qiM1v5r1LxO6N2SlidSx/wD7Wi9v3VRp+ayaHiV0RU2U7fO0V8Z2Se37psazG1tvEHw8rf5TK3dv/rcfXf8A3YsaZWfa8c+HFzLlhqehB/8AXW9al/3oIaZWXlNT8ONV41Y7JZ3TGSsq3X7PcXlGT32a3UW94yW/RrZr0NYhLiH4fnKjWy3Di7hkLFtyeOqVlOaW/VUau+0+j92b32XvNvYyxc6z1wXDfinqjhvevHuFa5xlGcoV8Pfc1N0Zb7tQbW9KW+/Tbl6vdb9TNxtkvi3HD/X+B11Yu5wV3vWpx/T2dXaNeg/2o79uvSS3i/R9GUizGRrvReC1ziPu/P2fmqO7o3FN8ta3k171Ofo+i6dU9lumgyXFOeKfDDOcOslCpX3u8TUmna5KjFxXOu0Zpf5Op6rrs/wvdNKbMdJd9S7wJ44Tu5W2m9cXSdz0pWeUqPbzvRQrP0n6KfaXTf2ustlTecWUNSAAAAAAAAAAAAwKe+JLhlPTWZq6nwttN4PIVt7mEOqtLiT77ekJvqvRSe3TeKJsXzf4hExYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhfBrZQqah1Tf7fpKFpb0P8AaTqSf/ho2OfS01aap05TabUU5dPkikqXeGvR9zq7iBQzl7GVTH4mor6vVk/8pcyblSgnv3Uvbff3Vv7yJi7fi6yKQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9gKN+JS3q0ONWfnVg4wuIWtam3+KPkQhv++El9Ca6c+LHeGOpTqcFcBTg4udCVxSqKP4ZK4qPr89mn9TYjr1KzNYq3fa21LwKz+Swt9iI5PStzc1bnE1J1XRjCFSTnyRqqMlum3zQaT39pdJIzxuajjV3E7WvE67eIpSm7avLaGIxMJSVVLf32t5TW2ze7Uem+yM+qkkT/AMAeEb0TbyzWejTnqO5pcipwlzQsqb6uCa6Sm+nNJdOm0Xtu5bIm3U2GsAOK4lcQsJw+xX2vMVnUu6u8bWxpNOtcS+S9Ir1k+i/NpM2TVVLm61px51m6VCEfs1u1KNFNqzx1N9FKT/FN7Pr70tnslFbKfVf9VoOFvDPCcPbHlsIO6ylWmoXORrR/S1fVpfqQ37QXwW7k1uUm3UgBhuBwmveJ+ldDxlTzWShK/Ud1YWy824l03XsL3d12c3FfMa2TVftZeJDUWSlOjpaztsLbb9K9ZK4uH177NeXHdem0vzJ1U5Q1ncxlNQXKuM/kr3JVlvyyu60qvLu99op9Ir5JIzVZGAlskl2XoGgABsAAfUD8nCM1tOKkvmtwFFfZ60ats5UKse06UnCS+q2Y1mRmZPJX+VuFcZW+ur64UVBVrmrKrPlXZc0t20t3tu+gMx44rJXmJyVDIYq7r2V9QfNSuKE3CcPR9V6Nbpp9Gn1BZqxnDvxIqNCFnruyqSqRSishY001Pst6lLfdPu24brr7qK1F5SBfcaOFmZs62PyOcoV7W4g4VaNzYXChOL9HzU9hrMqsPFLTGnMRkVeaJz+Py+Bup7Qt43UZ3NpJrfklBvmlT+E9unuy67OWWL5upf8ADrxglWq2ukNV3TlVntSxl7Vl1m+yoTk/xekW+/u99t9lT1MWaRqQAAAAAAAAAAAazNYuzzOJusdkreN1ZXNKVKrRm9lKLWzXTqvzXVegHz61jgKultV5bB3EpTlYXMqMZyWzqQ7wm16OUHF/Uiusuxpw0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFpvBrj1T07qfJr/pF9Ttv9lSUv8A3pUc+vVhqkFOnKEu0k09vmalxXB7SVLRXD7D4mNBUbvyY1r3qm5XE0nU3a77P2U/hFIFdyAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFafF7pOdWhjNW2tKTVtH7BetbvkpylzUp/BJTlOLfxqRMsVzXOeFfXVDC5q50plKsaVplaqrWU5tRjG62UXTb+M4qO3X3o7LrIyN6i3KKQ9NelTuKUqVanGpTmtpQnFNNfNMDHsMdZY6Eo2Fpb2sZveSo0owTfz2SAzgDYEI8XuOON0kq+I08qWTz8W4VGnvQtGu/mNP2p7/AIE/jzOPZ5a2TUE6B0RqbjBqa5ymTvbh2qqfz7K14ptvv5NGPZy2/CtowW2/onmaq3PFxNJaXxOkMLRxGAtY2tpCXO/WVSb7znLvKT2XV/BLskikOgA5DXevtPaGsPtGfvo06005UbSn7dxW7+5Dvt025ntFerQMVf4hcfNT6jnVtsE5YDFttLyJ73VRb95VV7nbfaGzW7XMydXOf9Q93cm93KT5pNvdyfxb9X8zFgAAAAAAAAAAAAAAAA+r3fVgfkoqSaa3TAtp4fOL8dQ0aGnNUXO2cpR5ba6qyS+2RXo3/pUu/wCslv33Klc+pifTUgAAAAAAAAAAYFBONOYts9xX1NkLGSlbSuY0ISTTU/JpwpOSa7pum2vlsTXTnxxRigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAXU8L+LjjuD+NrqEoVMhWr3k1JbN71HGL+sIQKjlfUuGsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAa/LY60zGNusfkaMa9pdU5Ua1KfacZLZr/8A6gKRcYOFuS4e5OdRKreaerT/AJpftdYdelKtt7tRekuil3Wz3ipsdJdSLwn8QssdaUMTxA8+vSprkp5enF1Kiiu3nwXWWy/HHdvZbpveRsqbysdp/UWH1HZu5wOUtL+ikt529aM+XfspJPeL+T2ZqW53/P8AcBx2tOIemNGUZPO5WjRuUt42lN+ZcT6branHeXX4vZfFoGKycUePOb1TGvYYBVMJhJJqUozX2qtHf8c10pprb2YPfunJp7E2rnP+vDgpwVvdYTt8tnYVbHTKSnBJclW9+Ch6xp+rn3faPfmSQvX+LgYnGWWIx1CxxdtStLO3jyUqNKPLGC+S/wDncpD2X95b2FnWur2vSt7elFzqVq01CFOK7ylJ9El8WBW7ij4inzVcdw8it09p5a4p7x7f5mnLv6e1NbdHtF9GZaqcq5Xtzc397XvL+5r3V5XfNVuK83OpUe227k+r7ErzHpDQAAAAAAAAAAAAAAAAAAAP2EpQnGdOUoTi1KMotpxae6aa7NP1Anrh94jcnibWhY6xsp5ajTXKr62ko3PKt/fhLaNR9lvvF/Hd9TdReVhtF6903rOk56dytG5rRjzVLaW9OvT7e9TltLbrtvs18GykY68AAAAAAAABFHiC189EaLnRx9VwzmU5rezfrSW36St3W3Kmtv2pR6bbmVsmqSwioxUYrZJbJEur9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhWk40ZuPvJPb8/QMfRjR2I+4NKYXEbpuwsqNq2vVwgot/VrctybsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABh39nbX9nWtb63o3NtWi4VKNaCnCpF91KL6NfJgQLrzw3Y3ISqXWjb54mu92rO5Uqts306Rl79Nd/1l8EjLFTrEL5zg1xA0/cyrrAV7ry5+xdYqtGq5fNKLVRfWKMxuysapacUJ232WrbcQHQa28iUL5xfy5ew+n/F+6c4P67zdVK203d2VOUtp18jtapfNqftv6RbGN/UifeGvh6w+BqUr/VtSlm8jDaUbdQatKUun4X1qPo+sunX3d+psib1qeDUuK4j8Q8HoHGRuMzcc93VX83saO0q1d/JekV6yeyX57Jmyap3xN4mZ/iDd7ZWorfFwm5UMdQk/Kh8HN/5yaX4n0XXZLcm1c5xxJigAAAAAAAAAAAAAAAAAAAAAAAA87etWtbmlc2letbXVGXPSr0ZuFSnL0cZLqn+QZmricAOLMdaY+OF1BWhDU1rD3ukVfU1/nIr0ml70V/SXR7RqVzsxNJrAAAAAANTn8tZYHD3mUydeNvY2lKVatVl+GKXw7t+iS6ttJAUL4j6vutcauvM3eRdOFT9Ha0X/wBHoxb5Ifn1cpfGUn8iLXSTHMhQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMjH1KFHJWNW8W9rTuaU6y239hTi5fwTEZfH0mg01ummn1TRbk8gABgYWPvaN9GvK3mpxo1p0JNPf2ovaS+j3X0AzQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANgGwDYB2AgvjNxxs9KzucPpaVG+z8ZOnWqv2qFk/Xm29+ou3Iuz959OV5aqc6qdl8nfZnJXGRy95Xvb65lz1a9aXNKT9F8kl0SWyS6JIlcmMQNAAAAAAAAAAAAAAAAAAAAAAAAAAAyLC9usbfW97j7ipbXlvNVKNak9pQkuzT/wDn4Bnq5/BLitaa+xysshyW2oraG9eguka8V082n8vjHvFv4bMqVzsxLJrAAAAMConic4jvO5l6Ww9xJYuwq73lSD2VxcRfufOFN/vnv09lMm1fM/qCjFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGk000mn6MCcODvHW60tb2mE1TTqXuDpJUqF1TXNXtIdlFr/OU102/ElvtzbJGyovK1eCy9jncZb5LE3VK7sbiPNSrUZc0ZL1+qe6a7ppplIbUDg+LPEDH8PdKVMldThVvqqlTsLR+9Wq7fBdVCPeT9F07tJmyMrhLjL3FcPcJRy86s8nVpSvLt1V7fn15yrVFL5qVSSDHZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMW7uKNvbVa9erClQpRc6lSclGMIpbuTb6JJddwKu8aOPFXISrYTQlxOjZbOFxlYbxnWfrGj6xj8Z93+HZLmeWqnKvMIRhFRikorskS6PIAAAAAAAAAAAAAAAAAAAAAAAAAAAAABk4rI3uHydrkcVdVbS/tZqpQr0ntKEv96a3TT6NNp9AyzVz+C/Fmy19j42V4qdnqS3hvXtk/YrJdHUpb9XH4x7x39Vs3UrnZiWDWAACGvETxKejtNxxWJrKOosnBqlKM9pWtHtKtsuu/eMe3Xd/haMtbJqmcIxhFRitorsiXV+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeudanF7TqQT+DYZrpNCcQs1oi/d1p/IxpQm969rVXPQr/04brr096LUvmbNZZKmyz8T+RvaELWz0fTuMrOO0XRvZ1IOW3fy403Lbf03+pup/L36D4b6r19rSlrLinQnSt6TjUoY+vTUJTUXvCn5XXy6UX1cZe1J90922NzxZ1GpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANBq7UuL0ngbnL5q5VCzor85VJPtCC/FJ+i/wBwFMuK/FjNcQK9S1lvYaejJOlj6c9/M2e6lWl+OW/Xb3VsujftObXSco7MUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIx17dYzIW9/jrira3ttNVKNelLllCS9U/93ZrowyzVxeCXGCz1zShisy6dpqWnBvkXSF5GK6zp/tLu4d11a3W+1SudmJjRrGh1nqGz0ppq/wA1kpfzezp87jH3qkn0jCP7UpNRX5gUD1bqDIar1Hf5nL1VK6u6nPyx92lFdI04/sxWyX731bItdZMakNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBZLwoa5tKcKujLujSo3s5zurKvGMYu4T9qpTm0t3KPWSb33juunKt6lc+os8akAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMTIXlDH2NxfXtaFC1t6cq1apN7RhCK3lJv4JJsCi/GPiJd8Q9TSrxU6GFtW4WFrJ9VH1qz/bl8PwraPXq3NrpzMcEYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7LWvWtbqhc2tapQuaFSNWlWpy5Z05xe8ZRfo0wz1eDgdxDp8QdKxndbU83Y8tO/pJJKTafLVj+zNJ/k1JeibqOdmIs8Yubquvp3AU5tUNqmQrx26SkmqdP8AdvU/evgK3lW4l0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPFzipKLlFSfZN9WB77S6r2N5b3lnWlQurapGtQrR706kXvGS/JoMs19AOGuqaOtdF4vPUYqnO6pfpqS/wA3Wi3GpH47KSe2/dbP1LcnVgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAqp4p+If229lorEVk7ShKNTKTjvtUqdJQo79to9JS79eVdOVoy1fMV6JWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOq4XaxraG1rYZqDk7WL8m9pxW7qW8mudberjspr5xXxZsT1Piw/ic0Nd6pw2N1FgKTvbjHwmqtKgueda3ntJTht73K1vsu6m/gk9qeblVMpzjUjzQalH4ol0eQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFjPDhpvD6t4W61w11So/bry58mpWcd504eTB0JL+jUU5L5lTxz69V1r0K9tcVbe8pypXVGcqVanJbOE4txkn+TTJdItZ4PK9aWjc7byT+zU8nz05bdOaVGHMl+5P6/MqOfXqwRqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPeM+u6eg9F3OQi4yydw/s2PpS/FWkntJr9WK3k/y23TaDZNUVr16tzcVLi4q1K1erOVSpVqScpVJye8pSb7tttv8AMh18esAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSaaa3T6AfQPhO3Lhbo5ttt4az6v/UwLcWPqPhlo3UdatXy+nLCrc1t/MuYU/KrSb/E5w2k3829waopqPGxwupMvioVXWjYXte0VWXeap1JQUn83y7kV1n2NeGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS54YtVx07xHjj7qo4WOagrR7vZRrpt0W/zbnBfOojZUdR6fExpSWmuJVxe0aShYZxO9pNLp53RVo/N820/wDtBW81MHg9uKUuHWWto8qrUstUlNLu1KlScZP9zX9U2J69S3rXP0NLaUyucuYupRsLeVZ009nUaXsxT9N3st/malUXJ+IDiBdX7r22QsrCg30t6NnCcV8uae8n+9fQnXT8pO4Qcfq+ezNrgtYWtvQubuao2t9apwhOo9lGFSDb5XJ9FJPbdpbLubqbzixZqQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCifHbXD1zrqvWtarnhsfzW1gk/ZnHf263f8cl0fT2YwJtdOYjsxQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfklOScaUZSqy9mEYrduT6JJfnsGLM8aNV6m4Y4nQWD03lFazt8Y6Ny/Ip1YVnSjRguk09u0u2z6lWok2uLXiM1yrV0XDBuo10ruznzp/HbzOXf6Ga38Ifua9W6ua1zc1JVbitUlVq1Jd5zk25SfzbbZi3rAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB5Ua1a3q069pOVO5ozjVpTj3jOLTi/3pBlXqyOLwfGHhtYVrum/s1/QhdUKlOadS1q7bPlfbmi3KLXZ9Uy3PxzHBfhZnuG+p8rKeVx99g763jCThTnSrurCW8JOHWO20qie0vVfAzC3Uh8SsFPU2g8/h6UU695ZVadFN7LzeXeG7+HMomsQ1wF4LWtHC1M5rrG211cZG3UbexuKfP9moyW7lJPtVl07dYrpvu2lkir1quetcHU01q3N4RTqc1hd1KNKpN+04J705vb1cXF/mT4qfYvxoHK1M9ojT+WuHF172woXFXlWy55U05fxbLc3QgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEMeJrXD0xoiWJsavLlc2p28XHvToJfpZ9n12aguz3nuvdMrZNU2SSSSSSXRJEuoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO84D4+hk+MWlba6jzU43M7jb9qlSqVYf3oRf0NievEn+MuhyZfSVw2uWpQu6aXzjKk/wDi/gKzlXQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7gWI8KvECnY1qmjsvcKnRuKjq4ypNvZVH1nQ37LmftxXTd867tIqVz6i1BqQDCsbanZW6oUXJ04yk4qT35U23yr5LfZL0WyApD4i6lKXGnU1SnNSinbqbXVKStqakvpsvruTXTnxbjg7Zuy4V6ToTTU1i7eUk+6coKTX8SnN2YAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD01akKFOU6kowhFOUpSeySXdtgUD4rawnrnXmSzMXL7Fv9nsYyW3Lbwb5Xs1uuZuU2vjL5EV1kyORDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASF4fa8LfjPpWpU7OtWpr85W9WK/i0bE9eLOceuH1bX+kYU8dGms1YVHcWiqS5VV3i1Ok32XMttm/WMd9lubUS4pZl8bfYXI1MfmLOvYX0HtK3uYOnNfBpPun6Nbp+hOOm6xA0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwrNqjUlHo1FtfRBlWE1jwDdXRuOzmi5Val7GypVbrG1Jup5zdOLlKjJ9VLfd8j6Pfpt0T3Ezr6r+3KnUTTlGcX0fWLi0/wB6aa/NMxXqctDeI3N4axpWWpcfHOKklGN3CsqNxy9ffTTjN9lv7Le3Xd9TdTeXT3vijoQltj9J3FWLXvXN/Clt9IwkbrPy4XVHiI1nlaVajj44/C0JdFVt4OrWS9VzzfKvzUUzNb+f9e7g3wcyetMrSz2rKd1QwLn9pk7hy8/Jzk+b8XtKm995TfWSe0e7lFIW/wAi48YqMUopJLokvQpDzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQn4pNXvAaD+57Wo43+ccrbdd426SdaXb1TjD+u/gZW8z6p2lstktkS6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdHwzru24laRrRly8uXtVJ/syqxi/4SEZ14+hq7FuSMuN+qtM6X03CrqfF2eYr1nJWGPuKEKqrVEur9pNRit480vTdd20jK2TVHqk3UqyqSjCLlJycaceWMd3vtFeiXZL0RLo8Q0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHhWe1Gt/q5f4MRl8fRnRsoz0jhJwe8ZWNBp/Ly4luVVy8TvDP7NVqa1wNtGNCrJfetGmtuWT6K4S7bPop7eu0uu8mZYrmtF4ccZpXVjzOl9WYq0u628b+yqSi6dZbJQqxjVi1NJbU5cqe3WT26GRvXxKdz4adE1rh1IXmft4t7+VTvIuK+W8oN/wATcZ+q6vS3B3RGmrinc2WEpXF7DbluL6criaae6aU24xfzikxjNdxbX1tc3dxQoV6dWtbSUK8YPfypNcyjL4S5Wnt32afZrfWM4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCuN2r1rTiNk7+3qKpjrV/YbNppp0qbe8013UpucvycfgTXTmOEMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB50bqdjcULyl0qW9WFaL+cZKX+4RlfSz0LclH/ABJ5yeb4t5SmpqVti4U7Gil6bRU6n155yX9VE1fKMDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfk4qUXF9mtmBfngplaWX4UaVuaUm+XH0rae/fzKS8qf96DLcq665oUrq3q0LinCtRqxcJ05xUozi1s00+jTXoGKi8VOF+b4Zahp6q0PK5WGoTdxSq0t51cZLrvCa689FptbvdcrcZ+kpZVS78rcY7xQ5SGPjC90xZXV3s07ihfSpU2/R8jhJr8uYaflz8OJfE/ihnKGn9P3VOwnc9ZU8bCVGNGmmt6tWs+acYrdbuLW7eyTbSM3W2SLS6B0tY6N0zZYfH7zjQTdWvJe3cVZdZ1Zd3vJ9e/RbLskUh04AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACNuP2q5aQ4ZZK5tZuF/e7WFo02nGpUTTkmuzjBTkvnFGVs9UXjFRiox6RS2RLq/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeu4/5vV/oS/wABGXx9INNXLvdO4u6k95V7WlVb+coJ/wC8tyUG4mc//KbrDzN+b75uu/w8x7fw2IrrPHOBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSeAeq8tp/iFg8daX1xHGZK9VC5sudujN1I8vPy9lNNQfMtn7Oz3XQ2J6i867FOZsBHud4Q6Dzl47q/wBNWir7tudtKds5N92/KlHdv4sN2ug0ppHBaSsZWum8Zb4+hJpzVJbyqNb7Oc3vKTW77thjogAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgVC8WupXktcWWAoy3t8Rb+ZVit1+nrJPZ+j2pqG39Nk1fKDDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPXcf5Con3cWl+b6IMr6TYmyjjsVZ2NN7wtqMKMX8VGKX+4tyVi4/8Ic7daqv9TaXsZ5GzveWtcW1BrzqNVRUZNQb3nGWyfs7vdvptszLF89Yha50dqq0ta1zd6Xz9vbUYSq1atbG1oQpwim5SlJx2SSTbZOVX6jRhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGVh8hcYjL2OSseRXVlcU7mlzrePPCSkt18Omz+TYZV8OF+vcXxA0/HI43mo3NJqneWc5Jztqm3Zv8AFF94yXRr4NNK3OzHbBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMe4rU6FGpVrTjClCLlObeyikt22/hsB869WZqepNU5jNz5194XdS4jGb3cYSl7EfpDlX0IrrPGrDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGdp6yeS1BibBLmd1fW9BL481WMf94jL4+kKLcn7sBGHiQyk8Zwdz3k1OSreKnZRfxVSpGM1/Y5xWz1R4h1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbnSmqM3pHKrI6cyFWyuuXkk4pShUj+rOEk1Jfn27rZiVlmpJn4i9dyoqmnhYNf5yNlLmf0dTb+Bup/LUXPHbiPVnvDP0qEf1aWPof8UZDW/mLH+HXO6j1Rw/qZfVV47yvXvqyta3lwp81CKjDtCMV78anXbcqIqVgwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhzxPasjp7h1WxlvUUchm3K0ppPqqO29af5cr5PzqIytk2qZJJLZLZL0RLqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAd/wABNP1NRcWMDShGbo2Fb7yryj+CNLrHf86nIvr8jYnq/F8V2KcwCCvGDOUeGeLhH/OZmjF/kqVaX/CZVc+qiEugAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHa8G7jSttr6zlrm1oXGKqQlShK5W9CjXbjyVKsezh0lF8yaXMm+i3WxPWrU5Pgjw8y3PcRwNO3nVW6qWNxUoR2fqoxlyfwKRtcvc+GTSUlJ22W1DRk+ydajUiv309/4mY39V6Mf4ZdOUbqE7/NZe6oRabox8ulz7Ps5KO+z7dNn8xh+qnTF4+0xWOtrDHUKdvZ20FTo0qa2jCKWySNSzQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMTIXlDH2Nxe3taFG1t6cq1WpN7RhCK3lJv4JJsChXFjW9bX2tLvLyU6djBfZ7CjPbenQi3s2v1pNuT77bpb9ERbrpzMceFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOr4a6GyvEDUkcXi0qFGEVUu72cOaFtT3232/FJ9VGO/Vp9km0kZbi6XDvQGE4f4qpaYKhPzK8lO5uqr5q1xJLZOT6LZbvaKSS3ey3bbtyv12YACvvjGr8ujtPUN/fybntt+rRqL/iMviufVUSXQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1uBKHCLjFl9BVaVje+ZktOOftWblvUoJ93Qb7fHy2+V9duVts2VN5XH07ncdqLEWuUwl5TvLC5jzU6tN9H8U0+qafRp7NPoynNuQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgVB8RfFeGqLuppnTtfzMFb1P51dQfs3lWL92P61KLXftKS3XRJubV8xBpiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgXI8KmMsbThbRvrZwld39zXqXcunNGUJunCDffZQjFpP8AXb9So5depoNYAAK++MOzqVNF4G9W7pUMl5c9lvtz0p7P8t47fVGVXPqqJLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdvwo4iZPh7nPtFo5XGLryX2ywcto1V25o+kZpdn69n07bKmzV2tH6jxeq8Fb5jC3Sr2dZflKnJd4TX4ZL1X+7Ypzb8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgVQ8QnGOWXldaU0lcuOMjvSyF/Sl1uX2lRptf5v0lJe92Xs7802r5ivySSSS2S6bIxb8b27gfoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAtz4QFJcNco2pKMsxWcd10a8mint9U/ruVHPr1NlzXp21F1ZtuMfn1b7JL4tvol6tmpZMW3FNppv0foB5AczxA01baw0flMDeSdOF5S5YVdt3SqJqUJ7brflkovbfrtsCKA5nF32Dy95istbyt8hZ1XRr0pLbaS9V8YtbNPs000RXWXWGGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHbcKuImS4e577ZZp3GOrtRvbJvZVortKPwmuuz+j6dtlTZq8GmdQY3U+DtMvhbiNzZXEeaEl0afrGS9JJ9Gn2ZTm3QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxbmtSt6FStXqQpUacXOdSclGMYpbttvokl6gVo44cdaF9Z3mndD1nKnU3pXWVh0Tj2lCh8d+zqdtt+XfdSWWqnKt6SSSSSSJdHlCMqlSFOnGU6k5KEIQi5SlJvZJJdW2/QCSdQaajw20vR+9/LlrLNUWqVq+WX3ZaPdTqvff8ATT6wi/w7z2e8dzfEeo1XRbLojFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBYvw36cv8zpK4u8DrPN4W6tr2pRuLOn5Ve3e6jKM40pxajupbN9d3F/AqOfSe8Hpb7DeQv8AJ5jKZrIJbQq31SChR6bN06VOMacW+vtcrls2ubY1OuqAAAIf46cJaOurNZLEunbaktocsJSe0LqC6+XN+jXXll6b7Po+mWNlxTrLY2+w2UuMblrWtZ5C3ly1bevHlnH5/NNbNNbppppkukusQNAAAAAAAeQH4013TX0A/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77hBxLv8Ah1mnOMalzg7qS+22UX1+Hm0t+iqJenaSWz26NbKnqau7p/K2Odw9plMTdQu7G6pqpRrU30lF/wAU/Rp9U00+qKc21AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANDqLP08BRpV7nH5O4tG9qtezt3ceQv1pwjvUa+cYy29dgNLh+K2hcvbxq2erMOlLtG4uY0J/2KnLL+AbjqLTL469ipWV/aXEX1TpVozT/AHMMeF/m8Xj4SlkMlZWsY93XuIQS/ewOOzfGPQGGnGNxqewr1JJ7QsXK7b+X6JSS+uwbiMNU+Jy1jSlT0ngbivUaajXyM1ShF79/Lg5SkvzcTNbOUG644ian1zUks9lZ1LNS3jY0F5VtB77r2F7zXo5uTXxMtVOZHKGKeVGjUr1qVC3pVK1etONOlSpRcp1Jye0YxiurbfRJBni0vDPh1jeFOmrrW+u1CWXtaDrKjFqUbJPoqcPSVaTajzb7by5Y9N26kxFuq4av1Df6s1Jf5zLT3urupzuC92lFdI04/sxWy+fd9WyauTGnDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAExeFvVMMDxDni7mcYWedpK33eySuIbypbv5p1I7erlE2I6XORSAAAAAc3qzRundXW8aOo8Ra5BQi4wnUhtUgn3UZraUd/k0DXAZDw6aCunvb2+TsV+rb302v7/MZjdrVS8MOjvw5bUsfkrqi/8aQxv6p/5MGj/wD8Z1N//k0P/gjIfqvyPhh0ck+bLall+d1RX+FIYfqsih4atE09t7rP1Nlt7V5Fb/PpBDGfpsLfw8aApf5S0yNbt/lL+ov+60MNrOXAPhw1tLT9Sf8ASyN1/wDEGG17afAnhvTTUdL0Ov61zXl/jMYbaxc7wJ0JkMXXtrPD08bdSi1Su7aU1OlL0ezltJfFPuv3jDVPNV4G+0tqO/wuWpxheWVTklyPeM13jOPryyTTW/Xr16pk10l1qg0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEpcDeKlXQOX+x5WrUnpq8n+nik5O1m/8APRiurX6yXVrqt2tnsqeoulZXFC9taFzaVade2rQjUpVaclKE4tbqUWujTT3TRTmzAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh9acL9H6xnKrnMFa1buT3d1R3o1m9tt3OGzlt8JboGoty3hawNSnthc9kLN/+lW9G5X8FB/xMxutR/wCSm/8A84UP/wBFX/xhjdZ2M8LdpSqL7y1bd16P6ltYwoP98pT/AMBh+mt15o/hVwsslHIWt5qLP1f0lrYXd2218J1I0+WMae/60Xv1ST2ezw21AOZyVbMZS4v69Gzt5VZbqhZ0I0KFGK6RhThHoopdPVvu222yVyYxbelVuLijb21GrWuK01SpUaUHOdScnsoxiurbfRINXB4EcHaWireGb1FCFfU1aLUIpqUMfCS6wg+zqNdJTX9GPTdyqRyt1GXio128vn6WlMZWTsMXNVLyUGmqt1t0h+VOL+PvSaa3ijKrmIIMWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeVCtVtq9OtbVZ0a9KaqU6tN7ShOL3jJNdmmk/oD1fDg9rmjr/RttkuaEMlR/QX9GK28usl1aX6sltJd+j233TLcrMd8GAAAAAAAAAAAAAAAEAeKzRH3tp6jqmxpN32JjyXSit3O1b3b7P3JPm9PZlMyxXNxU4l0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnDw8cWFpe7paa1Jc8mBuJ7W1xUl7NlVk+0n+GlJvv2i3v0TbWyo6i4CZSAAAAAAAAAAAAAAAAAAAAAAAAAAAABganI1szTpt46yx1xPbtXvZ0Vv+apT/wAAOUvNT62srx06+gFeUIrd1sdmaNRfPaNWNKT/AHBvxzOX49Y7T7itS6P1jik5cqqXFjBU2/lN1En9NwYz8Xx+4e3safmZmrZSm9oxurSrBfWSi4r940x32D1LhM/FyweYx2RUe/2S5hVcfzUX0+oY3W4DdAAG4HK6u17pjSUX/KHN2dnVSTVBz560k+zVKO82vmkDFe+IPiPv7+FSy0TaTsKLWzyF3GMq7/1dPrGH5ycns+yZmrnKALivXurmrc3detc3VaTnVr1pudSpL1lKT6t/NkrdToPh7qTXNdRwOPlKz5uWd/X3p21P4+3t7TW69mCb6+huJvUWz4U8IsHw/Ubxt5LOSTUr+tDby01s40odeRbd3u5Pd7vbotxFutpxj1vDQuiLzJQcPvCr/N7GnJbqVaSeza+EUnN/KO3do0k1Q6rUqV6s6lerUq1pyc51JycpTk3u5Nvu222Q6vEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA77gnruegdbUbyvUksLectvkYLdpQ39mrsvWDbfZvlc0u5sqeovbTnGtTjOnKMoSScZRe6a+KZTm9oAAAAAAAAAAAAAAGLe21K8tK1tc0oVbetCVOpCa3jOLWzi16pptAfPviJparovWmUwVXndK2q721SXXzKEvapy32W75ej2/FFkV05vxzoUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0mmmt0+6YFl/DZxYjONro3UlxJVtlTxV1VfSa9LeT9JL8Dfdez3UVKpXPqLMo1IAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2A9VSnGrTlColKEk1KMlumn6NARjrHghorUjnVp41Yq9l1+0Yxqhv+dPZ05bvu3Hf5mY2XEEau8N+q8ZUlVwVSyz1vutuVq1ufm3GT5enynu/gZip1P6426zPEfRipxvb/VuGpwfLCFzUrqj9OfeDX5D635WbDjlxEhFRpatbX7dpazf7/L3G0nMe3/lu4lzTT1RNr9nH2q/j5Y2l5jnM3xC1bmJz+9dU5adOouWVJXjo05L5whyxf7hpkjR4bF3uWryoYPG3mQrpbyhZW860vryp/wATG7IlDS3ALXGccJ3lpbYS1klLzL+qnUaffanDd7/KTibif0m7RXh50pgZUrnNOrqC9hs/53FQt016qiuj/KbkjcTbqYrejTtaFOjRpwp0acVCEIRUYxilskkuiSRrGSwKNeITW61pryrCzqqph8TzWlo4tONSW/6Wqmt/ekkk0+sYRfqya6cxGhigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANb9+oFsfCzrt5nT09K5Go3f4mkpWkpN71bXfZLv3ptqPp7Lh8ypXPqYn81IAAAAAAAAAAAAAABXXxdaTjdYLH6stqa8+wkrS6kkutCpL2G3+zUaX/aMyq5qrJLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA7NNNpp7pp7NP4gW+8PXFqnq2zp6e1DXUdSW8N6VWb2+3Uor3l/1kV70fVe0t1zctSudmJyNSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYBsBoMtpHTeWm6mU0/h72o/wAVzZUqj/fKLBrWy4ZaHqPeej9Pp/s4+lH/AAQGRacP9HWlSNS10pgaNSPVThjqKkvry7g10lKnClCMKcVCEVsoxWyX0A9uwAABEviM1zLR+g6lvYVnTzGWcrS1cXtKnHb9LVXVP2YvZNdpSiZWybVKIxUYqMVsktkiXV+gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtNK6gutKalxuesG/PsKyq8u+3mQ7Tg/lKLkvqIy+Po3F7pNdmW5P0AAAAAAAAAAAAAADhOMebw2C4eZepqWEq9ld0ZWatoSUZ16lSLShBvtLvLm68qi36AihFNSUIqb3kkt38WQ7PIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHusrq4sL23u7GvUt7u3qKrRrU3tKnNPdST+IF2OB/E+14gYZ0rtwt9R2cUry2XRVF2Van8YP1XeL6Ppyt1HKzEpGsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFDONusv5bcQL69t6vPjLNuzsdn7Lpwb5qi/pz5pb9+XlXoTa6czHBGKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4Tqwg9pzjF/BvYMS3wV4RZLWeUtMll7Ora6Zo1I1Kk7iDg7xLZ+XTT6uL6Jy6LbdJt9tkT10uwikAAAAAAAAAAAAAAAFSfF/mql1rPDYWM07eys3cySl2q1ZuPVfFRprb+k/iTV8oFMWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbLTedyOmc5aZjC1/Iv7WfNTk+sZL1jJesWujX+/YayzV6eFmvMbxC0zTyVhvRuqe1O8s5y3nbVduq+cX3jL1XwaaVudmO1DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjTxAaolpThhlbi3qqnfXqWPtZbtNTq7ptNdnGCnJfOIrZNUZjFRioxWyS2RDq/QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJz4BcHLPWWMlqHU06/3ZGvKjb2dGbh9o5HtKU5r2lHfeKUWnum99u+yI66WY0/orTWnFS+5MBjLKdNbRq0raKqfWe3M382ykOl2AAAAAAAAAAAAAAAAeE2oxbk0kurbfYD558RNRvV2us1noveleXLdDePK/IglCluvjyRi382yK6yZHPBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6fh1rXJ6D1LQy2K2qwf6O6tZS5YXFLfrBv0frGXo/im00rLNXt0jqHHaswFpl8RV82zuI7x3W0oNdJQkvSSe6aLcm8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKteMfNupltN4CnOSVKlVyFaHpJyfl039OWr+8mr5iuhiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMC43hRyVO84WKzjuqlhfV6M1v19qSqxf5NVP4MqOV9TUawAAAAAAAAAAAAAAAARl4g9RvTnCnM1qVSMbu+isfb7vb2qvsyafxUOeS/IytnqjcUopJLZLokS6v0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASJwV4lXPD3UD8+dSpp+8kle26XN5b7KvBekku6XvR6d1FrZU9TV4LK6oZCzo3dpWhWtq9ONWlVpyUo1ISW8ZRa7pppplObMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPsBRXxD5T724waglGpz0LN0rKmv1fLprmX9uUya6co5MUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADd6U1dnNG388hp3IV7Wo+WVWlGW9KuoNtRqQ7SXVr4rmezW4ibH0GwuQpZbD2ORtk1QvKFO4p79+WcVJfwZbmzwAAAAAAAAAAAAAAAFZPGTl5OemMLTqtQbr31an8WlGnTf8AeqmVXKtRLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABOnhu4pw05dw0rqCs44W5qbWdeb9mzrSfuS+FObfftGT69JNrZUdRbzcpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwk1GLcmkl1bfoB83czkpZnN5PK1I8s8hd1ruS/wBZUlP/AHkV1nj9p4u8qYe5ysaLWPoVqdtOvJpJ1ZpuNOPrKXLFyaXZLd7brcaww0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPOlb1r2tTtLSlOtc3MlRo0qa5pVKkukYxXq22hGXx9FtK42eG0ziMZUmpzsrOjbSku0nCCi3/AALcq24AAAAAAAAAAAAAABgUj8TOdpZvizeU7dxlSxVtTx/PGW6lNOVSf1Tqcr+cCa6corMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+SSaaa3T6NAWv8ADbxTlnLKnpXUFypZi2pv7FcVXtK7oxXuv9apBfWUVv3UmVK59TFgjUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAchxayn3Nwz1Rfqfl1KWOrqnL4VJQcYf3pIEUIweJu8vlcfiMbFTvbytTtaKlvtzSe272T2S7t/BMj118iYfEZjsdo/G6O0RheeFCyt6t/cNvrcVZtQVWfxk3Gr+Sey2S2NqeUKGLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyT2W7aS+L7ICc9JeHLNZeFC7yOfxNvjK0I1KVXHuV5KpF9d1JqMNmuzTl37G4j9J+4ecK9L6E/S4q1lXyD9l395JVK+3XpF7JQXVraKW/ruUm3UgBgAAAAAAAAAAAAAABE3HDipaaCxNWyx1WFfUtzT/AJtQ25lQi+nnVPRJeifWT+W7WW42TVKqs6lWrOrXqVKtapJznUqScpTk3u5Nvu2222S6vEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD22lzXsryhd2VadC6t6katGtTe0qc4vdST+KYYvFwU4jUeIOl41ayhQzVny07+3i+nM+1SH7Etm18GnHrtu6jnZiSTWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAhbxY5R2PCp2SSl9531C2a9eWLdZv/wBkl9TK3n1Bfhisp3fGTFVowco2dtc3E/2V5flp/vqbfUyL6PE5kal7xkytCp1hY21taw/Ly/Nf8arFOUWGKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFqPB/qGrdaczGnriW9PG1oXFtu/dp1ubmgl8FOEn/2hUc+p9WINSAAAAAAAAAAAAAAAc1xDzz0vonN5qnRVarY2s61Om02pTS9lS268u7W/y3A+f2Vv7zLZS5yGTual3fXM3Ur16j9qcn6/JeiS6JJJEOsmMUNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG+0LqrI6K1RaZzEN+fR9irScuWNek2ualL5PZbfBpP0ErLNXy0fqXH6r0/ZZjDzlUtLqPMlNbTpyXSUJr0lF7pr5dN11LcnQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANZmc1i8HbRuM1krLHUJPljVu7iFGLfwTk0twPzDZzFZyhOthcnY5GjB8sqlpcQrRT+DcWwKzeMPNKvqHTuFpuX80tql5V2fRurJQhv80qc/7RNXy2/g+0xKFvnNU3NPbz2sfayaabhF81V/NOXIt/jBmxnVQ1xsuvtnFzVlVvflvnS3/oQhDb+6ZVc+OKMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ58HlG4lrrP14J/ZYY2EKj26c8qqcf4RmbEdLblIAAAAAAAAAAAAAAAMTI2dDIWFzZXtKNe1uaUqNalP3ZwkmpRfyabQFH+MvDC94eZiE6Tncafu5uNndNbyg9t/Jq7dFNJPZ9pJN900psdJ1qOjFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABJ/AbiVPQOonbZGrUencjNK6jvurep2jXS+XRT26uOz6uKRsqeou3SqRrU4zpyjOEknGUXumn6plOb3AAAAAAAAAAAAAAAAAAAAAAAAAAAAMCi/Ga/yOteM+Rx/OpTp5COIsqNaW1Ol7Uaae/opTbk38/kiaufJqwHDbg/huGFSpqK6zd5Uvbe2qfaqvNGha+VtvJuCW7S239qT6xT6Gpt1W3LVspxd4r3FTF0pfaMvc8tuprZW9vBKMZT77KMIqUtu7b26sz1fkXWwWNxOhNEW9lSlG3xeItHKdWS/DBOU6ktvVvmk/m2U5+vn/m8nPN53J5atTVOrkLuteSgn7rqTctvpvt9CK6zxhhoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8lJRW7fQCYtFeH3VuoKNK6y07fA2dRKSVzF1LnZrdPyotKP5SkmvgbiL0sxwu4fYvh3g6lji/MuLivJVLq8rJeZXmlsu3aK67R9N33bbdJt124YAAAAAAAAAAAAAAAAKmeK/W9LK5q10nYVIzoYuf2i9nHqncOLUYLp+CEpN7PvPbvFk2r5n9QEYsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADW4FnfC5xKdzCnovN1pyr0YN4qtUlvz00t3QbfXeKW8e/sprpyrepXPqYsmjUgAAAAAAAAAAAAAAAAAAAAAAAAAAH1ArLx54J5nLaluNSaPpU7yV64yu7LzI0qkKqSXmU29otNRTabT5uq332WWKlc5f6e43a6xdDAZqndRxkZRVWd86NvCXL7rquG86qT2eyT3aTabW4+nxOXCXhfi+HOMrSjVV3l7mP87v5x5fZXXy4L8EF377t9W+iSZjLdQn4huMNHUsa2ltK1Y1cPCa+230HvG7lF7qnTfrTTSbl+JpJez1llquYgYxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIXh9xsMpxh03Sq0PPo29Srdz3W6h5dKThJ/lU8vb57GxPXi9yXQpzAAAAAAAAAAAAAAAAACNeNvEKlw+0lOvRcKmZveahj6Mmus9vaqNesYJpv4txXTm3MrZNUduK1W6uKtxc1alavVnKpUq1ZOU6k5NuUpN92222/mS6ePWGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA87evWtbmhc2tWdC5oVI1qNam9pU5xe8ZRfo00mD1efgxr634haShd1JUqeYs3Glf28Je7U26VEu6hNJtfD2o7vlZUcrMSMawAAAAAAAAAAAAAAAAAAAAAAAAAAAByWu9d6e0PYK71BeRpTmm6NtTXPXrtekILq/Tq9ordbtAVL4rcZc7rrzbG3TxOn2/+aUp7zrr/rpruu75FtHqt+bZMm10nP8AqMEtlsuiRigAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAdRw40ZkNe6njhsXOnRl5M69a4qreFGEeibSe73k4xSXx39GJE24/dc6C1Hoe45NQY+VO3lLlp3tF+ZbVX17T9G9n7MlGXyNwnWuWMUAAAAAAAAWR8H2mZOpm9U14NR2WNtZb9+qnVe35+Ut/lJFRz6qz5qQAAAAAAAAAAAAAAABrM5kbPDYm7yWSuIW9pa05VqtWS6Rilu3sur/JdX2AoZxM1nea81ddZm8UqVF/orO3f/R6Cfsx/pPdyk/i36JIi105mOVCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHVcMtaXmg9XW2Yteapbr9Fd20f8ApFFv2or9pe9F/FfBsSp6mr6YTJWeZxVtkcbcQubK5pxq0ase04tbp9eq/J9UW5tkAAAAAAAAAAAAAAAAAAAAAAAAADAgLjTx0o6br3mA0i6N3nKe9K4upLno2c+zil2nUXw92L6S3acTLVTnVVstkr7MZCtf5a7r3t7We9S4uJuc5fBbvsl0SS6LboiVyYxQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC1ng/wkLfSWYzVSDVxfX32dN9f0VGK22+Htzqb/kio59X6nm+tLe+tatteUKVxb1YuFSlWgpwnF91KL6NfJmpV84m+HSzvPOv9B1YWF11nLG3Em7eb7vy5dXTffo949UvZRlip1itmew+SwGVq4zN2NxYX9L3qFeOz23a5ovtKL2e0k2n8SVy6wA0AAAAGdgcRfagzljh8TR87IXtVUqMOu2/dylt2jFJyb9EmxGW4+geidO2uk9K4zB2XtUbKiqfO1s6k31nN/OUnKT/Mtyb8AAAAAAAAAAAAAAAAYFTvFNxClkco9G4ms/sNnKNTJThPpVrdHCl07qHST6v2mlsnAm1fMQAYsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT74XOIn3Xkf5G5e42x97UcsdOpU6Ua73cqK37KfdL9fdbNzNlR1Fs0UgAAAAAAAAAAAAAAAAAAAAAAAGBXbxE8YKuGnX0tpG4dPKSXLfZCk+tpFr/J03/pWu8vwJ9Pae8ctVOdVWhCMIqMUlFdkS6PIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3fhEyH2nh3kLKe3mWeSqJJfqVIQmn+9y/cVHLr1OprADn9V6UwerLD7HqLG0L6iusOdbTpv4wmtpQfTumgK5638NmRtXO40VkIX1FbtWd/JU6y7dI1UuWXXf3lH82Ti50hbUekdR6ZdT7/wADk7CFOXK61S3k6TfyqR3g/ozMVLK0Hn0v9LT/ALSGGx+qrTa6Th/aQa2ensJk9S5KFhp6xr5K9nttTt1vyrfbeUvdhHr70mkhjNi4XAzhTR0FYzyGTnTutQXUOSpUh1hQp9H5cG++7Sbl67L0RUjnbqXjWAAAAAAAAAAAAAAAADg+MOtYaF0TeZWDi76f82sqco7qdeafLv8AKKUpv5Ra7tBs+qHVq1W5rVK1xVnWr1ZOpUqzk5SqTk95Sbfdttv6kOrwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP2MpQnGVOc6c4tSjOD2lFp7pp+jT67hi8XA3iCtf6PhUu5x++7DloZCEdlzS29mqku0ZpN9ls1JLsVHOzEmmsAAAAAAAAAAAAAAAAAAAAAAIn4+8SFoTTatsZVg9RZFShaRcebyIL3q0l29ndKKfeTXRpSMtbJqlFWpOrVnUrVJ1as5Oc6lSTlKcm93Jt92222yXR+Bo2km29kgNjl8RXxVtip3e0at/aK+hS9YUZSlGm5fOai5pfquL9RjJda4NAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABaXwcTpPTmpqcZJ1439Nzjv1UXSSi/3qX7io59erFmpAAABsBqMlp7C5Td5PD468b7u4tYVN/wB6YNap8OtEt7vR2nG//VdD/wDiG7W+xmNssVaRtcZZ21nax92jb0o04L8oxSQYzgAAAAAAAAAAAAAAAAAwKX+J7V/8ouIH3TbVOawwcXbrZpqVxLZ1ZfHp7MNn2cZfEmr5iHzFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA67hXrW40DrKzzFPnnZP9BfUIJN1beTXNsn+KOykuq6rbs2bKmzV97C7oX9jb3tlVhXtbinGtSqwe8akJJOMk/g00ynNlgAAAAAAAAAAAAAAAAAAAA1WoMtZ4HB3+VyNVUbSzoyr1p/CMVu9l6v0S9XsgKCa91Tea01Xf57Ic0alzLalRcuZW9Fe5TX5Lv0W8nJ+pFdZMc+GjaSbb2S7tgTLwF4Q3Or76hm9QUJ0NNUZKcIVI7Sv5LtGK/0X60vxe6vVrZEddI/4maghqriDnszRlCVtcXThbOK2ToU0qdN7fOME/qzK3mfHNBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOw4W69yHD7UayVlGVe0rRVK8s3PljXgnutn6Ti22n82uzYlTZq7OiNaYPWuIjkNPXka8Ekq1GS5atvJ/hqQ7xfR/J7bptdS3PHTgAAAAAAAAAAAAAAAAAAAAAAAADUapzFHT2nMpmLpc1CwtqlzOO+zkoRcuVfN7bL5sD51XFzcXtzWu72pKrd3FSVetOXeVSbcpN/Vsh1j1hoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFm/Chr3zqFXRWTrpVLdSr4yUmk5U996lFfFxb5l3fK5dlEqVz6mLKmpAAAAAAAAAAAAAAAAAAAArR4udYOnQx2jrOTXnJX19tv1gpNUoP0e8lKbT/Uj8TLVcxWYl0dHoPRWa13mZWGAtlUlTSlcXNXeNC2i+zqS+L2e0Vu3s9l0bSRluLX6D4E6T0vShWyFtHP5NdXXv6alTi/2KPWMV69eaXzKxzttZniB1rT0fw+vaVGrGGWykJWdlBS2knJbTqLZ7pQi29/1nFeopJqkEIqMVGPRJbIl1foAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAM3CZjI4LKUshhb24sb6l7lehLlltvvyv0lF7dYtNP1Q1lmrXcGOOVrqidthdUulZZ6b8ujWj7NC8l6Jb+5Uf6r6N+6+vKqlRecTqjUgAAAAAAAAAAAAAAAAAAAAAACCvFtqFY7h9a4WnOKr5m6jCUWu9GltUm1/WVJflJmVvM2qiEuoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADLwmTvcJmLLKYyq6V/ZVo16M+u3NF9n8YvqmvVNoRlmvoBoHU1prDSePzmP9mldw5pUm93SqLpOm+i6xkmt9uu2/qW5OlAAAAAAAAAAAAAAAAAABgfPXibn3qjiDn8vzKdKveThQklt+hp/o6f92Cf5tkV058efDXROT17qelicYvKoRSqXl5KO8LalvtzftSfaMfV/BJtJC3F5dGaWxWjsFb4fA2yoWlL2pN9Z1ZvbepOX4pPZbv8ktkki3Nkaoz+P0tgbzL5mv5NlbQ55y7uT7KMV6yb2SXq2BRHiPrXI691PXy+SSpU3+itbWL3jb0U+kN/WT7yl6t+iSSi11kxy4aAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1/DLT+mtRZz7HqvUtTBwnKnC3jC35vtMpcya817wpbbR95deb02ET1bFhqvhj0o6cvJzWoo1GujnVoSS+nlL/ErIn9VwmrPDRnLKhUracy9nllFOStbin9mqv4KM03Fvt1fIvyMxv6/1KfAHXGSy9rfaV1dG5oaqwiiqyultVr0Hty1Jb9XJbpOXZpwlu+Y2JqYzWAAAAAAAAAAAAAAAAAAAAAAFLvFNn3l+KNSwhOTt8Pawtkt04urNeZNr57Spxf9Emr5RAYsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnLwra3WD1PX01f1VGwy8ue2cmkqd2l2/wC0itvX2oQS7mxHUW+RSAAAAAAAAAAAAAAAAAA9FzVVG3qVZNJQi5Nvt0W4HzRovltqb2b9hdF3b+H5kOs8Xx4LaGpaE0TbWUqcPva4Sr5CqurlWa9xPd+zBeytunRvbdsuOduu4vbqhj7OtdXdaFG2oU5VatWpJRjThFbylJvskk22GKRcbeJdxxCzyp21ScNO2U39it3vHzZdvPmvWTXup+7F/Fy3m105mI4MUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8d4z5obqXpJbgWz8O3Fmjm7C20xqW82zdvFU7SvWlt9tprolzetVLo0+skk+r5ipXPqYn81Lj9S4GFTVWB1JbQhTvrGo7WvU913FrWTg6Un6qNSUKiT7OL295gdguwAAAAAAAAAAAAAAAAAAAAAGNe3NGys691dTVKhRhKrUm+0YxW7b+iA+cmaylbOZrI5eulGtf3NS7mk90nUk5bfRNL6EV1njDDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2W9ata3FKva1p0LilONSlVg2pU5xacZJr1TSf0DL9X34Uavpa30PjszHkjcyj5V3Tjt+jrw6Tjtu9lv7S/Zki3Ku1AAAAAAAAANwPzf8/wBwH7uAAAAAGm1jX+yaTzVynt5NlXqb/DanJgiifBjE/ffEvSNhvHZ3lO4nGSTUoUYutJdfiqe31J/rpfH0EXYpzVJ8TXEt5nJVtH4apJYyzqbZCqpdLmvF/wCSXxhBrrv3mu3s7ubV8xAxiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADtNEaowtpClidcYGjmcBvvCpCPl3do9226VWLjKUG5Num5d+q9U9lTZ/iXpeH/S+rMVQy+gdXV3Y3Cc4efTVzBvvy7rknBr1Ut5J9+puJ/ToMJbcb9G0qVGaw+sLGL2UJ3bhcRju/8AO1FBt/0udhnxvVxfzFhzR1Lwy1dZuK3lKxoq9pr+uuVGmPXbeInQnn+VkqmWxVT1je2E01+ahzMzSxvrDjdw6vtlQ1TZR3/08KlH/vxRpjrMDqXCahdZ4HMY/JeQo+b9juYVfL5t+Xm5W9t9ntv8GGN2AAAAAAAAAAAAAAAAAAIw8R2b+5eEWccKkYV7+McfT3/F5slGa/2fO/oK2KPL5diHUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJs8LGsXhdaVdP3lblx+aX6JSn7MLqC3j3ey54px7btxgjYjqLiIpAAAAAAADgOKXEvEcPcYql+5XOSrxbtcfRklOpt+KTfuQ36OT+ib6Ga2TVW9QcWeIOt8orPF3d9bOq96eOwcJxnsv2o71JdF1e6XyRmq/MnrMx/B7inkpfaa1vdWs5e0ql7ldpv8ANRlJp/nszcNjpbXH8dNAylc0HfZixptOdKVysjCSX4eRtVkv6Gw+p+Ja4RcYMXr5/d9zBY7UEItzs5z3jVUe8qUns38XFpSj17pbjSzEsGsAAHG8YbuFlwr1fVqPlX3Vc00/2pU3GP8AGSArf4RsL9r4iX2SlT3oYvHuMZ/q1KslGP8AchUJi+k1+ITX0tD6M8uwrcmZyjlbWbXektv0lZdV7qa2/alH03NqZNUkhGMIqMVtFdkS6vIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAkbgZxBr6F1jbRuK3Lgb+pGhfU5P2YbvaNZfBxbW79Y7r0W2yp6mr1IpzNgPXOEakHCcVKL7prdMDXVNP4erNyq4rHzk/WVtBv8AwBrOt6FK2pKlb0qdKnHtCEVFL6ID3gAAAAAAAAAAAAAAAAACs3jIzL8rTGCpzjtKpWv60PVcqVOm/rz1P3GVXPqtBLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHstbi4tLujdWdaVC7oVI1qNWL2dOpFqUZL8mkwyzX0G4eakp6u0Xic5Siou8oKVSC32p1V7NSHXr0mpL6FuVdMAAAAAGl1VnLPTmncjmcjJxtbGhKvU2a3kkvdW/4m9kl8WgKGZbIZviLrnz621fL5e6jRo0vwUuZ7Qpr4QgvX4Jt9W2T66eRdbhloDE8PsDCxxVNVbyok7u+lBKrcz+L+EV15Y77JfFtt0i3Xb7BhsBXfxLaEhaWtPX+m19hzWOqwqXdS3XLKpDmSjW2XecG1u/WLe76Iyqn+JP4Q6yjrnRNjl5+XC9Tdve0odqdeHSSXwT3Ukt30kjWWY7kMAIg8U2UhYcIb62nvz5K5oWcNv6aqS/u05GVs9aXwiYJ2OhMlmatLlq5W9koT/Xo0VyR/v+aI3q/ULeI3U38o+KmSo0pqVliYrHUtt9uaPWq9u2/O3Hf4QRlVyjExQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAfk4qcZRfaS2YF+uDOfqal4X6cydeU53E7VUa8pveUqtJunOT/ADlBv6luVduGAAAAAAAAAAAAAAAAAAAAAD7AUm8T+UlkuMV/QaXJjbW3s4tPvvHzX/Grt9Ca6cooMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACx/hB1R5dxmNK3NT2Jr7xtE+nVbQrR33/1ckv6TKjn1FoTUgAAAAgrxd5aVnw8sMZSqcryWQhGrH9elTjKo1/bVMyq59RB4V8bTv8Ai7Qr1G+bH2FxdwX7T5KX+FWRkb0uoikAADQ66s4ZDRWoLKr7lxj7ilL5KVOSBECeC26uJ2OrLWpOTt6c7OtCL7Kc6c1J/m1CH7kZFdLMmpAKkeLbVX3lqfH6bsJOpHFwdWvCG757mqkoQ226uMNu3+l2Jq+f9TpB23CrgtB1VR/+hcYuZdoVrjl7f16sv7xSfaonOpVq1Z1bmpKrXqSc6k5Pdym3vJt/Ntsh0j8DQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW58IOQdxw8yVjUqc0rPJ1OSP6tOdOE1/ecyo59ep3NSAAAAAAAAAAAAAAAAAAAAA/GB87NeZKOZ13qTJU6jqUrrJXFSnJ/qeY1D+6okV158aMNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABvdB6inpLWuGz0W+WxuYzrKK3cqMvZqpfNwlL67CMvj6H05xnCM4SUoSW6knumviW5PYAAAAKyeNCNRx0bKP8AkVUvFL+ly0tv4KRlXy5XwiNR4q32/wCLC1kv9tQZkO1t8nUrUbKtVtKPn3EIuUKXMoupt+FN9E32W/TfbcpDF0/mrDUGMp5DE3Ea9CTcZJLaVOa96E4vrCa7OL2afcDcbgRjx31tjtI6EydGtdQjl8hbVLaytlP9JKU4uPmbekYbuTk+nTbfdoVsjT+FvTM8Dw1p3t1T5LnMVftceZbSVBRUKKf5xi5r+mZCpmNYjjjXr2OgdHVbyi6U8vdP7PYUpNdajW7m16xgvafxfKunMZWyarHwB07W1jxatbm/dW5pWVSWXvK1STcqlRS3hzP1lKq4yafdRkZF9fIlTxfao8jGYnS9tV2qXU/t93GL2flQbVNNeqlPd/8AZG1PMVeJdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALD+DbI06We1TjJSfm3Fvb3UI7+lOU4Sf8A7SBUR0tSagAAAAAAAAAAAAAAAAAAAABrNSZKOG0/k8nNbwsrWrcyXyhBy/3AfN62/wCb0/i4pv8AMh1j2BoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPxpNbNbp90BePw7agWoeE+GlOpGdzYReOrpejpezHf5un5b+pccrMScGAAABDHio0/UzPDKV7bR5q2HuYXskotydLZwqbfJKam/lAytlyq+eHnMwwnF/Ayr1VToXjqWE2/V1I+wvrUjBfUyL6Xq9CnNAXGrhZmamSuNW8N7q8x+aqpK/tLK5lbyu0v85Bppc69YvpJdVtLfmxsv8AquuS1vryjfuxyWpNV297FqErWpcV6NTf4OK2e5n1ckSHwj4JZjVGZp5nW1td2eGU/NqUrtyjdX0k+kWpe1GD9ZS2k10j35luMtn8W+pwjSpxhTiowikoxitkkvRI1D03tzSsLSvdXlanRtqEJVatWpJRhThFbuUm+iSSbbAopxm17PX+sq+QpynDEWsXQx9OW/Sknu6jXpKbXN23SUV12JrpzMiy/h30Z/IfQMr3LwVrkspteXbq+w6FJJ+XTlv25Ytye+20pyXobEW7VVOJeqZa01xlc7vN29xV5LWMk1y28PZprbd7NpczXxkyavmfHNBQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEh8ANRLTfFfC1as3G1v3LG1mlv0q7cn5LzI0938NzYnqfF7UU5gAAAAAAAAAAAAAAAAAAAAOA485H7r4PasuP17Gdv8A7Vql/wAYIocQ7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALGeDnOOnlNRafqTm41aVPI0Y/hi4vy6j/NqVH9xUc+otIakAAAMS9tqN3bVra6pQq29aDp1KdSKlGcWtnFp9002tgKMcYOHd9w61PKlSdaWGrzdTHXcd00k91TcvSpD4+qSl8Upvx0l2Yn7hDx0xOoMfb43Vl5QxmfpxUHXrtUqF5+1GXuwm9usHt1fs79lsqbMThGUZxUotOMlumuqaNS8wAHHax4i6W0dTl9+Zi2o3EV0tKcvNuJP02px3l1+LSXxaBiqvGPjLkdfRljbGlPG6bjLmdCUl5t0094us09lFbJqCbW/VuWy2m1c5z10/h74QV8zd2eqdU2sqeJpONextaqad1LvGrJf6JdGk/f6P3feSHXX+JA8U2tvuTSS03ZV0snmIuNVRa5qdoulRv4c79hdOqc/gbamTVRES6gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPyXN3pycJrrGSezi11TT+TA+hXDjUcdW6Gwmdi4895bRlVUVso1V7NSK/KcZL6FuNdOAAAAAAAAAAAAAAAAAAAACIvFJeU7fg5kqM9t7q4taK/wBtGf8AhBmVs9UsJdQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHc8Ds3/ACf4r6bu5OSo17j7DVSeycay8tb/ACU3CX0NievF90U5gAAAA0uo8BitSYmvis7ZUr2wrradKovX0aa6xkvRppr0AqlxJ8P+fwE6t1paNXO4jq/JSX2ukuvRx6Kr6dY9Xv7vqTYudf6ijHZnN6eqVrTG5TL4ispNVaFvdVbaUZeqlBNbP80Z9bkrariFrZU3D+WGoNm9+t7Pf9/ca38xgZDVOo8jbyoZLUecvKMu9O4yNacX9HLYaZGkp04QcY04JOTUUorrJ+iW3dg8WT4J8B5VPs2f17bckVtVtsRWXf1Urhfx8v8AtesSpEXpYXVWfsdLafvcxl63lWlrDnlst5TfZRivWUnskvizUqC621Nfax1Pf5zJ+zXuZ+zRUuaNGmukKce3SK9dur3fqRa6yY0gaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWY8IOrE6eV0ldT9qD+8LTdvrF7Rqx+C2lySSX68vgVK59RZg1IAAAAAAAAAAAAAAAAAAAEEeMKbXDXFQi/fzNFNb90qNaX+5GVXPqoyJdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH5LnS3ptxqL2oNPZqS6p/v2DH0V0Xm4ak0lhs1TUYq/tKVw4xe6hKUU5R+j3X0Lcm8AAAAABsBodSaTwGpKahnsNYZHaLjGVzQjOcE/1ZNbx+jQEeX/h54f3KStrC+sF/wCjX1X/AAm5GY3a1cfDNouEuZ3+opJfhd3DZ/up7jG/p3Oj+FWjtJXEbrDYWlG9itld15yrVV023jKbfJ0b93Y1mug1PqHFaXxFbJ5+9pWVnT6c9R9ZS6tRil1lJ7PaK3b2DFLeMfE6+4jZiHs1LXA2s27Oyk+rfbzqu3R1Gt9l1UE2lu3JubXSTEemKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGy0znLzTOosfmsZLa8sqqqwT92a22lCX7Motxf5iMs1fjQer8VrTTtDM4WuqlCouWrSb/SW9Re9TqL0kv4rZrdNN25Om3XxAbgAAAAAAAAAAAAAAAAACv8A4xKvLo3AUXv7eTc/l0oVF/xGVXPqp5LoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAW/8ACVnY3/DeviKkoediLypSjCPdUqn6WLf9aVRf1So59epxNSAAAAAAAAAIQ4pcesLph18dptUs1mopxlKMv5rby2/HNe+02vYj8Gm4sy1smqsau1RmtX5Z5LUN9VvLjqqal7NOjF/hpwXSK6Lt1fq2yddJJGlDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASVwAxs8triVnZaryGm8hUpc9B2lNSV3y7uVOW8tm0vaScZJpS7bddielr6Oi8gpRld641TXa96PPa0oy/sUU1+8pzdXj7NWVuqUa1xW9XOvVdST+rAzAAAAAAAAAAAAAAAAACufjKlJYLS8E/Yd7VbXzVLp/izKrn1Vsl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJr8Jud+7eI91ialTlo5izahDb3q1F88ev8AQdU2I6i4pSAAAAAAAHNa01ZhtG4apktQ3sLa2Xs04e9UrS9IU4LrKX5du72SbAqTxV4153W6uLDHupiMBLmg7elP9NcRfT9LNejW/sR6ddm5bE2uk5RSkkkkkkvRGKfoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPba3Nezu6F3ZVp0Lu3qRrUa0Pepzi94yXzTDL9Xv4Qa7o6+0hb5JeXTyVH9Bf0IbpU6yXVpPryyW0o9+j233TLc7Md4GAAAAAAAAAAAAAAAAABXXxk099PaYqb+7fVI7fHek/wD9jKrn1Vkl0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANxozOvTOsMJm1KahYXlOtV5O8qW+1SP1g5L6iMs+PotBqUU4tOL6potyeQAAAAARjxg4sYzh9Yu3oqF/qCtHe3sVLZQX+kqte7D4esn0Xq1lrZNU01XqTL6tzdXLagvZ3d5P2Y79IUoekKce0Yr4Lu92922ybXSTGoDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB3fBfXk+H+s6F9XnP7nu0rfI01u15e/s1UlvvKDe/bfZyS7myp6mr3Ua0K1KFSlOM6c0pRnF7qSfZp+qKc3vAAAAAAAAAAAAAAAAAIC8YcF/IfB1uVNxyqhvt1W9Cr/8AsZW8+qmEuoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+SipRcZdmtmBfHgXnXqPhXp68q9bilbq0r7y3fmUW6bb+b5VL+sXHKpADAAAAiPjlxWoaCxqsca6dxqO6puVGlLrG3h282ovhvvtH1a+CZlrZNUyyF5dZLIXF9kLirc3lxN1K1erLmlUk/Vv8A+UvQl0nx6A0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAtn4V9cvM6aq6Yv6u+QxEE7dye7qWre0V33flv2PRKLgVK59TE+mpAAAAAAAAAAAAAAAAEFeMCnKfDLGzj2pZihJ/k6VWP8AxGVXPqoiJdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABZrwc51O01Hp6pKKdOrTyFCPq1NeXU+icIf2io59RZY1IAA4Ti3ryhoDSdbJ1Iwq31V+TZW8t9qtZptb7deWKTlJ9Oi27tBsmqK5jJX2ay13k8rdVLu/u6jq169TvOX5dkktkorokkl0RDpJjEDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOl4b6pnovW2KznNNULaso3UYpvnt5+zUW2/V8r5l84oRnU+PoPTkpwUoyUotbpp7potyewAAAAAAAAAAAAAAABEviht4VuDWVqz/wCjV7Wqv9vCP+EmZWz1Skl1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEi+HzPfcHFvBzqVOS3yDnjquy3381ewv9pGmbE9eL1rsU5gBgUh8SGrJam4lXdnRm3j8LzWNGPXZ1d1509n68yUPypomunMRaYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB+SipJxl2a2YH0C4T1p3PDDSVWpLmnLE2vNLffd+VFNv5luLrwAAAAAAAAAAAAAAAEe8f7D7x4OaroL8Fm7j/AGUo1P8AgDYoj6sh1AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHlSuK9pWpXVpOVO5t5xrUpx7xnFqUWvqkIyvo1pzK0c7gMblrVNW99bU7qmn3UZxUkn8+pbk2gGh1vnIaa0jmc1UUH9htKlxGM3spyjFuMfrLZfUD52uVSbc685TrTbnUnJ7uUn1bb+bbIdYBoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB6oC9nh8u/tnBnStX9W08r+xOUP8AhLcqkQMAAAAAAAAAAAAAAANDruwllNE6hx9Jbzu8dcW8V850pRX+IpHzqoNyoU2+rcU3+4h1jzDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcnwrZz704V0rGp/lcTdVbPrLeTg35kH+W1TlX9EqOV+VM5rEKeLTKOy4WqxhGMnk7+jbST/AFI71m/30or6mVvPqnRLqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALseGCvCpwYwtKm9/Iq3VJ/L+cVJL+EkVHK+pYNYAAAAAAAAAAAAAAAfjA+a+QsKmKyV7jq2/mWdxVtpb/ABhNx/3EV1nj0BoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnjwg5v7FrTL4abjGnkrONeG76upRltsvzhUk/wCobEdLcFIVZ8ZGQjUy2lcbGbUqNG4upw36PmlCEX/dn+8mr5V1MWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALeeECvOrwyyNKb38jL1oRXwTp0p/4yZUc+vU6GpAAAAAAAAAAAAAAAD7AUB4z42WK4s6stpPdyyE7lflWUav/vCa6c+ONMUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOn4XZxaa4kaby05wp0qF7CnWnPtGlU3pVH9Izb+gievH0JRbmpd4rL6N5xdnRW3NZY63t3+bdSp/xomr5RAYsAboAAAboAAAboAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC0Xg0v/Mw2qrDf/IXlGvt/rKfL/7oqOfSxxqQAAAAAAAAAAAAAAABS/xV42FjxbncR75HH0LiT/ai50n/AAhH95NXyh8xYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8asPMpTh+smgx9C+G2e/lPoPAZmVSNSreWVKpWce3m8u1RfSakvoW5KbeICvC64zaprQ22VelS/sUKUX/FMmunPiPp9IsxSz2q+F+isbDVjsMXcxucZRspU1VuJSpxdWfVxW+7eyafNuuvRFY5y1kaw4eYaz4l4m1xuhrG5xNaNGNerK+dKFLebUn5Skm2ls93un8Ab8Qvx2xdhhuJ+XscTa0bSzp+XyUaMeWMd4LfZGVU8SvrnhlgLvij9247GW9hjrXDq/uJqu6NGG1SS3ltGTe/ya6LubjJfjEw+lqGJnpa6v8ATminjc1kaNpShGde7rVqc31qRlKfLtt1326broDUc8UcXYWXG2+xtpZ0LfHq+oU1b0oKFNRahulFdEnuzL62eJN1nw7w11xcpYHA6YoKnO2jNylezo28Hyyls4wg5JtJ+vU3GS/GXw50bhsr9jucjoPCWmPqXs7KXNe3FWs5KDaklL2XF7b779uoZahXjDirHB8Tc9jcTbxtrG3qwVKjFtqKdOLe27b7tk1c8arSmk87q25r2+nMdUvq1CCnUjCcY8sW9k/aaBbjO1Pw91ZpfHfb87g7q0s+ZQdZuM4xb7czi3tv26jDZW21bpi2WC0FHB4DJWuUzFJwnVuKsHTvqr8pRdL9I+VbzfdR95fTcZK9d3wi17aW1W4raavPLpx5pckoTlt8oxk2/ojMP1Hq0Hhcdk9Jazu7/CZLIXNhawnbXNtUjGnZyaqbyqpzi2nyrspe6+nxFrWaW0LqjVVtO40/hrq9t4PldaO0Ib/BSk0m/khjbZGHqnTOZ0pkadjqGxnY3dSkq8ac5Rk3BtpP2W13jL9wJdZultC6n1VbVLjAYa6vLeD5XWjtGG/wUpNJv5IYWyPXl9F6kw+ftcJf4e5hlrqmqtG1glUnUi3JJpRb9Yy/cMNZGouHurdOWH27NYG8trRbc1ZpTjDftzOLfL9dhhsZGn+GmstRYi3ymFwVa7sK/N5VaNWmlLlk4vo5J94tfQYbGdV4O8QadOU5aYunGK3fLUpyf0SluxjP1HBVITpVJ06sJQqQbjKMls4td016MKSdwn4dY3UmBzupdW3d5Y6dxtNpVLaUYzq1Et2k5Rktktltt1cls+jNkTbiO7OwuMrk/smFsru6q1ZS8m2pQdarKK3e20I+01FN77LojFPfY6fzOQydxjrDE5C5yFvzeda0bac6tLllyy5oJbrZtJ7ro3sGa8cPg8tm5zhhsXfZCcNnONpbzquP58qewEi8IOF38pdcXOC1la5jEcmOlfU4eX9nqy2qwgntUg94+1L07rv0ZsjLc8cHldKaixFq7nLYHLWNsmk6tzZ1KUE326ySRjdY2HwmVzdSdPDYy+yFSC3nG0t51XFfNRT2AzP5Ial+8/u7+TuY+8PJ+0fZfsVXzfK5uXn5OXfl36b7bb9Aawcfh8nkra8ucdjry7t7OHmXNWhQlUjQjs3zTaW0VtGT3fwfwA2VrojVd3a0rm10xnK1vWgqlOrTx9WUJxa3Uk1HZprruhhsaetYXlG/djWtLineqapu3nTaqKT/AA8u2+/yDW4udE6rtbWrdXOmc5RtqUHUqValhVjCEEt3Jtx2SS67jGbHPBrPw+HyeauZW2Gx15kLiMHUlStKEqslFNJyaim9t2lv80GGPw+TyVteXOOx15d29nDzLmrQoSqRoR2b5ptLaK2jJ7v4P4Adpi/+Sj7stPvX+XP3h5MPtP2b7J5Xm8q5+Tm68u++2/XbbcfGfWz15w4xNvpHTmptEXmRu8dmbn7HTt7+MFWjVbkkt4pLvCS/d1e4wl/lbHUeg+H2hK9ti9Z5vPXecnSjUrQxNOkqVDm7b863f06tddlujchtvjXam4RVaeT0zLSeRWVw2opqFnc1IckqT23aqL5R3fbf2ZLZbdWGs7PaS4W6YzU8Dm8/qS4ylFqncXVnQpfZ6M9uqcWnJ7eqW/w7j4ba5HiroOtoPN29uruF/jb2irizu4R5VUg/Rrr1XT17NP12MsxsupO4T8B8fn9P29/rC9vrK7voOvZ2ltUhCfkLZOpJSjLfdyj222TW/fpsib1/ivZiwAAAAALE+DW6jTzWq7TdeZWt7Wtt/QnVi/8AvoqOfS05qQAAAAAAAAAAAAAAABWPxl43arpXKwpr/pFpVn+ahOC/u1P3mVXKtZLoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFwPCTmHfcNrjGVJR58Xf1aUILuqdTaqm/606i+hUc+vVZOJ9aVxxO1hUn3++LqC/KNRxX/AHSarnxzM/dYUuBqvHOk9ZW8JQlVtIW0pVoxaq3X2itzRVV77S5OXaPRdynONrxEttOZHBa3vM5RajjrilRqXdtSjO4hFUaE3Gm21s/ba79N2GRUXW88dU1Jdzw1le2Vk3Fwo3lfzqkU1um5fBpro2/zZLpFjeMGUt8fxnwcchk61taSt7ef2aE/LhXqKdRR86o1tGmt3v0k+vb1VVE8Y2pM/p3LcVNL2d7TlLU2PyFpRoTx1052HlOab2i17Ml6x2Xp1YP4jHi7/wDeCyH/AKxt/wDCBn9VPFg7V3z8RWbp2s4wtpYKl5vOt1z8zUH+e7f03N/qP48eH2KyljovRtHKXFKNbH5SdStDfdulPz6VJL4recdvkvkCq28fP/PDqb/XU/8AwoGX1fPjqPDjOULLiDOnKUJxwdRxlF7NNKXVCHT3cNb+8yXA3ibDI3Ve7jTp0ZQVeo6nK+r3W/b3V+5Bl9b7UH+Q8Ov+vpf+Jag/10NDC63XiUucja08nS035qlVq1JyjbTpeSk0k3s/a7JevX03N/rPmNDgq9jd2fH+viXTnZ1IKUHD3ZdLjdr5N7tBv+PDM2eeznh+0XDh59qq0LZyhkLewqONV1PXdRe7XO5Nr9qL29UP79RDU0ZrPJ5yeOusVk6uWp2bu3Su5ctRW6ly8652vZ5m109dycVsS/mrPPZzw/6Lhw8d1VoWzlDIW9hUcarqeu6i92udybX7UXt6qk/36xfD7ZZXFcQ8raanpXVpqWviJPGfeW/Ptz9eXm+afb0UvmZDps+E+N1XhcVrmvxL+8KWBnYzjVjkqrmqtV77uHM3vut1uu7ce5rL/wCOV1Le3Vj4X9CTsrm4t5yyFxFyo1HBtebcdHsZ/G/132vMlf2/ik0tbW99c07apQoqdGFWShJN1N9477Pc3+sniFdbYK61DxwzmFxNJO6vMvWpwSXSO825SfyS3k38EzP6qXI7TxAZu007hcVwz05U2scdThUv5rvUqv2lGXz3bm/nKPwFZzP65Tw6Vqdvxm05OtOMIuVaCcnt7UqFSMV9W0vqZPW9eJm4Q6czWM8Qmt8hkMVfW+PuVeyo3VShKNKrz3VOceWbXK249dk/R/Aqept+Ob0w8zLw0Wq4eO6++o5Kf3ksfv8AaOXmn25fa35fJ7ddt/mZ/G/369vhw/lL/wArt9/LL74+8PuKfl/evm+b5X2iltt5nXl35vlvv8xPTrz4xeD+ey+o+F3FSlqDJ3uThbYvzKP2yvKs6cnSrt7OTbXWEX9BC+xvOFrsn4faCx38pftSv5/b/wCTDh9t5+aXLvv15eTy+3Xt6bieF9e/hJWp0+OdSFSer4yq6fnCC1W/51J/aIy2h/1e0W181MT0vjnuDunc1p/hxxZhncTf451MS1Td1QlTVTlo3PNytraW267b918RC37DjFqLNaf4ccJp4PLX+OdXEp1PstxKmqnLRtuXmSe0tt33+L+IpJ9qScjRxlLxR46d5CjG4q6e57dyS3lX82cd18/LjNfkjf6z+OR0P/LVaH4t/wAu/vnn+7an2f7f5nlb+Vcc/k83s8vu+7025fkY25sxV0xabvCLWp0uJ17CpOMZVsXVhTTfvS82lLZfSLf0NievG64PaczWnuHPFqGdxV9j3UxLVN3NCVNVOWjc83K2tpbbrt8V8RGW/Yy7rC/yR4aaLr6W4fY/VGRy1oru9ubvFzvnTcoQml7PWO/O0uqW0H0fVg9rj9Sav1lLLaTu9X6bq4LTuIyNCtStqOMqWtvzRkpbLm7y5Yy2W/bfp3DcjY+IDRGfzfECrqHT2Nu8xicrRo1KFxYU3XitqcYbPl3293fft1/MWHN+O7sMpa8OcDwowGpa1KhkaN7VubmEppu3hUhXgnN+iTuF17ew/gb4n3UV8VOGera3ErM1cdhL+/tcje1Lm3ubek6lJxqSclvNdI7b7dWu3wMsVLMSpqOw0tc6x0DpnV+Wx9CnpnDurd/aK8IU6tXahCFKUpNLryOfL3cV22ZqfvsdBw+je5bjDldQXep9MZK3ljqlraY/FZH7RUtqXm02m48q6ez7Uv1pL022f0vioepcT9xZq5x33hj8j5PL/OsfW86hU3ipezPZb7b7Pp3TRK2sDQAAAATX4RKnlcU76MpNKth6sUvjKNai/wDBs2I6XFKQAAAAAAAAAAAAAAAAIa8VuLd/wmrXXNy/dt7b3f5pydJ/wq7/AEMrefVNCXUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ88HmUdtrHP4ppKF7YwuVJv8VGpy7furfwNiOkP69qedrzU9X9fLXku+/evP1MqufGikt1sGp6svEFXur/J1MzgcZG3uKMHy0VPzKk6e7gnL1XM137JPbubqPy1mjeJuFuNG6rwWuXkvNzt7O8qXdnCM3vJQ3Wza225Ft8n8hpZ/ji+K+d0/qDUlK60vY3NraU7anQnO4a560oJRUnFdF7KS+e24rZEi8U9ecP9S6zxucpTztzXs6NNQlQpU4094zckpQqrd9+voLWSVrY660XlOIuK1Pl45+neW1ejNzjToRpRUGtnKEFu/nt1GmXHI8Q9R47M8WrvUGPqVKuNneUq0Zum4ycYqO/sv8mP62T46Pi1xQo6g1VK70vK7trCqqEq83+hrVZU+baO6b2iuZ9vV7+iFpIy+G/ETC2+pY53Vd3kbe/o3Xmxp0FKdu7eNCVOnSjTT2Ti5S2b9H8d2JWWI+4j6ho6r1zl83a0Z0aF5VUoQm/aSUVFb/ny7/UyqkyNPjspkcZG4jjchd2cbmm6VdW9aVNVYPvGWzXMvkwFplMjZ2N1ZWeQu7ezu0lcUKVaUKdZLtzxT2l9QNtp3U13Z6j0xeZi9yF5j8NeUa9K3lVdTyqcKkJSjSjJ7R3UF0Wy6IGN7xJ4kZXU2qMtc4nM5y3wV215VjVupwjGPIk06cZuK3ab2XxFrJHGWOUyNha3VrYZC7tba7ioXNGjWlCFeK32U4p7SXV9H8WGvbh87mMI6jwuWyGOdT3/ALJczo8358rW4MZL1ZqSWRd/LUOYlfOh9mdy72o6jpb83l83Nvy79eXtuDGNh87mMI5vC5bIY51Pf+yXM6PN+fK1uDH5ks3lspf0r7J5W/vL2ilGncXFxOpUgk20oybbSTbfT1bBj2ZbUObzFCnRy+Zyd/RpveFO6up1Yx/JSb2GmMetlMjXxdvjK2QvKmNt5OdG0nWk6NKTbbcYN7JvmfVL1fxDHvudQZq5y1HKXOYyVbJ0UlTvKl1OVaCW+3LNvmXd9n6huOg0BxByOjdQ3ucp2tvlMrdU3B3N/Kc5x5nvKW/Mm5PZbt9f3sSlmuUyN7c5LIXN9f1pVru5qSrVaku85Se7f72Gs3S88RTz1rPUcslHFxcnVljXBXCfK+Vw5/Z97l339N/UMqa8Rxh07pahe18Ffa8zF/Ut3QoUc9e0529JtpqajFvqtl6dt103N1P51CGHzeVwlSdTDZO+x9Sa2nK0uJ0nJfNxa3MUzP5X6l+8/vH+UWY+8PJ+z/avttXzfK5ubk5+bfl367b7b9QYwcfmMnjba8tsdkby0t7yHl3NKhXlTjXjs1yzSe0ltKS2fxfxA/cPmsphas6uGyV7j6s1tKdrXnScl8G4tbge281Fm73J0MleZjJXGRoRUaV1Vupzq00m2lGbe6W7fZ+rBjMutb6ru7WrbXWp85Xt60HTqUqmQqyhOLWzi05bNNdNmNMjW5DMZPJW1nbZHI3l3b2cPLtqVevKpGhHZLlgm9oraMVsvgvgBtsZnY5PVVjfa4yufvLWinGVxbXHmXcElJwVOVRtLabT/JvbqD/4lHIcWsBYaJ1Bh8Fdazy13lqDtvM1DdU6saEHGUZcnLJ7dJPpt1aXXobrMcZi9VaCt8ZaUL/hv9su6dGEK1z9+3FPzpqKUp8qW0d3u9l0W5hl/wBe2hqHh9dZu0uHpzO6YtranUl5uFybuK9Ss5Q5HvWSUIxSqe71bkvgPhldXlOLeFsdF57DafudY5a5y9F20q2oruFVW8HGUZcii33Un8PTr02N0xF1rrfVdpbUba11PnaFvRgqdOlTyFWMYRS2UYpS2SS6JIzW5GLmNUZ/NW0bbM5zKZC3jNVI0ru7qVYqSTSklJtb7Nrf5sGPzFamz2HoOjic3k7Gi+rp213UpRf0i0DGuu7q4vbmdxeV6txXm951Ks3OUn82+rDW1sdWaix9mrSwz+XtbVLZUaN5UhBL4cqlsGY09WpOrUlUqzlOpNuUpSe7b+LYazMPmMnhbmVzhsjeY+4lB05VbSvKlJxbTcW4tPbdJ7fJBjADQAAAAAJN8NdzO3404CEPcuKd1Rn+XkSmv4wRsT14vGinMAAAAAAAAAAAAAAAAcvxMw8s/wAPtRYunT8ytdWNaFKO2/6Tkbh/eUQPnrTlz04z7cyTIdXkGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACQOAWUWJ4waaqzqSjSr1qlnJJ9JebTlGKf9fkf0NievHI6okp6nzU4ppSv7lpP/WzMrZ41oaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOw4O333dxY0jX7c2Rp0N/wDWJ0/+MRPXj6ALsW5gAAAAAAAAAAAAAAAD8YHzo1piFp/WWew8IShSsb+vRpKX+jU24P6xcSK68+NOGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADYadv/ALq1Jh8ltv8AYr6hdf2KkZP/AADL9jxz/wD9oMt//W3H/iyFJ4wQ0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb/h1/5xtJ/wDriy/8eAievH0RRbmAAAAAAAAAAAAAAAADAor4i/8Az3ap/pWv/wDq0iL66c+I5CgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//Z" alt="" width="565" height="411" />
还有这个:
是不是立马逼格满满~
这里用到的是一个有趣的模块,叫wordcloud:
github: https://github.com/amueller/word_cloud
官网: https://amueller.github.io/word_cloud/
*建议自行通过下载setup.py的方式安装,pip install 不一定能下载成功。
打开,并下载: https://github.com/amueller/word_cloud/archive/master.zip
然后 python setup.py install
安装其它依赖的模块:
必须安装第一步安装numpy: https://pypi.python.org/pypi/numpy
scipy: https://pypi.python.org/pypi/scipy
jieba: https://pypi.python.org/pypi/jieba/
下载whl文件,然后 pip install XXXX.whl
如果出现错误,请参考https://www.cnblogs.com/nice-forever/p/5371906.html
分享一下源码:
#coding:utf-8
#author http://blog.csdn.net/fyuanfena/article/details/52038984
from os import path
from scipy.misc import imread
import matplotlib.pyplot as plt
import jieba from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator stopwords = {}
def importStopword(filename=''):
global stopwords
f = open(filename, 'r', encoding='utf-8')
line = f.readline().rstrip() while line:
stopwords.setdefault(line, 0)
stopwords[line] = 1
line = f.readline().rstrip() f.close() def processChinese(text):
seg_generator = jieba.cut(text) # 使用jieba分词,也可以不使用 seg_list = [i for i in seg_generator if i not in stopwords] seg_list = [i for i in seg_list if i != u' '] seg_list = r' '.join(seg_list) return seg_list importStopword(filename='./stopwords.txt') # 获取当前文件路径
# __file__ 为当前文件, 在ide中运行此行会报错,可改为
# d = path.dirname('.')
d = path.dirname(__file__) text = open(path.join(d, u'love.txt'),encoding ='utf-8').read() #如果是中文
text = processChinese(text)#中文不好分词,使用Jieba分词进行 # read the mask / color image
# 设置背景图片
back_coloring = imread(path.join(d, "./image/love.jpg")) wc = WordCloud( font_path='./font/cabin-sketch.bold.ttf ', #设置字体 要是使用汉字就用simhei.ttf
background_color="white", #背景颜色
max_words=1000,# 词云显示的最大词数
mask=back_coloring,#设置背景图片
max_font_size=80, #字体最大值
random_state=10, #
)
# 生成词云, 可以用generate输入全部文本(中文不好分词),也可以我们计算好词频后使用generate_from_frequencies函数
wc.generate(text)
# wc.generate_from_frequencies(txt_freq)
# txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)]
# 从背景图片生成颜色值
image_colors = ImageColorGenerator(back_coloring) plt.figure()
# 以下代码显示图片
plt.imshow(wc)
plt.axis("off")
plt.show()
# 绘制词云 # 保存图片
wc.to_file(path.join(d, "名1称.png"))
官方的samplecode给出的效果图示例:
#!/usr/bin/env python
"""
Image-colored wordcloud
======================= You can color a word-cloud by using an image-based coloring strategy
implemented in ImageColorGenerator. It uses the average color of the region
occupied by the word in a source image. You can combine this with masking -
pure-white will be interpreted as 'don't occupy' by the WordCloud object when
passed as mask.
If you want white as a legal color, you can just pass a different image to
"mask", but make sure the image shapes line up.
""" from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator d = path.dirname(__file__) # Read the whole text.
text = open(path.join(d, 'alice.txt')).read() # read the mask / color image taken from
# http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010
alice_coloring = np.array(Image.open(path.join(d, "alice_color.png")))
stopwords = set(STOPWORDS)
stopwords.add("said") wc = WordCloud(background_color="white", max_words=2000, mask=alice_coloring,
stopwords=stopwords, max_font_size=40, random_state=42)
# generate word cloud
wc.generate(text) # create coloring from image
image_colors = ImageColorGenerator(alice_coloring) # show
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")
plt.figure()
# recolor wordcloud and show
# we could also give color_func=image_colors directly in the constructor
plt.imshow(wc.recolor(color_func=image_colors), interpolation="bilinear")
plt.axis("off")
plt.figure()
plt.imshow(alice_coloring, cmap=plt.cm.gray, interpolation="bilinear")
plt.axis("off")
plt.show()
最后感谢 http://blog.csdn.net/fyuanfena/article/details/52038984
和ta的项目源码:https://github.com/fyuanfen/wordcloud
python实战===老司机奇技淫巧系列之字符转换成图片的更多相关文章
- 带毫秒的字符转换成时间(DateTime)格式的通用方法
C#自身有更好的方式,Net任意String格式转换为DateTime类型 ====================================================== 原文 ==== ...
- mysql将字符转换成数字
在操作mysql时,经常需要将字符转换成数字,这一步虽然简单,但不常用的话也很容易忘记,现将在网上找到的方法记录如下: 1.将字符的数字转成数字,比如'0'转成0可以直接用加法来实现例如:将pony表 ...
- Linux c字符串中不可打印字符转换成16进制
本文由 www.169it.com 搜集整理 如果一个C字符串中同时包含可打印和不可打印的字符,如果想将这个字符串写入文件,同时方便打开文件查看或者在控制台中打印出来不会出现乱码,那么可以将字符串中的 ...
- Unicode字符转换成字符串
/*** * Unicode字符转换成字符串 * @param str * Unicode字符 * @return * String * * @author WXW */ public static ...
- android 按照拼音模糊查询中如何把字符转换成拼音
http://files.cnblogs.com/liaolandemengxiang/%E6%96%B0%E5%BB%BA%E6%96%87%E4%BB%B6%E5%A4%B9.rar 首先转换成的 ...
- python中将HTTP头部中的GMT时间转换成datetime时间格式
原文: https://blog.csdn.net/zoulonglong/article/details/80585716 需求背景:目前在做接口的自动化测试平台,由于接口用例执行后返回的结果中的时 ...
- 「新手必看」Python+Opencv实现摄像头调用RGB图像并转换成HSV模型
在ROS机器人的应用开发中,调用摄像头进行机器视觉处理是比较常见的方法,现在把利用opencv和python语言实现摄像头调用并转换成HSV模型的方法分享出来,希望能对学习ROS机器人的新手们一点帮助 ...
- Java字符拼成图片(image-ASCII)
目录 背景 代码思路 难点讲解 如何得到rgb 如何让不同颜色匹配不同字符 为什么我的图片只能打一半 OutOfMemoryError错误 为什么用汉字来打印图案会扭曲 装逼时刻 @(Java字符图片 ...
- Python入门 老司机带你上路
Phthon安装 https://www.python.org/download/releases/2.7.5/ 安装结束还没完,我们还差最后一步:设置环境变量.这是什么东西我暂时先不解释,大家照着做 ...
随机推荐
- asp.netMVC中实现分页方法
方法一:使用传统的sql语句实现分页, public class UserprintDao如下 /// <summary> /// 取得用户申请记录列表(按分页) /// </ ...
- bzoj3782上学路线
题意:从n*m网格图的左下角走到右上角(n,m<=10^10),有t个坐标不能经过(t<=200),只能向上向右走,问有多少种不同的走法,对p取模, p只有两种取值,1000003(质数) ...
- JS作用域-面向对象
1. 其它语言是以代码块作为作用域的.下面程序会报错(如C,C++中),因为局部变量name只在{ }代码块中生效.打印console.writeline(name)中的name时就会报错. pu ...
- 转:概率主题模型简介 --- ---David M. Blei所写的《Introduction to Probabilistic Topic Models》的译文
概率主题模型简介 Introduction to Probabilistic Topic Models 转:http://www.cnblogs.com/siegfang/archive/2 ...
- 【题解】Atcoder AGC#16 E-Poor Turkeys
%拜!颜神怒A此题,像我这样的渣渣只能看看题解度日╭(╯^╰)╮在这里把两种做法都记录一下吧~ 题解做法:可以考虑单独的一只鸡 u 能否存活.首先我们将 u 加入到集合S.然后我们按照时间倒序往回推, ...
- POJ1743:Musical Theme——题解
http://poj.org/problem?id=1743 给一段数,求最大相似子串长度,如果没有输出0. 相似子串定义: 1.两个不重叠的子串,其中一个是另一个加/减一个数得来的. 2.长度> ...
- BZOJ1013:[JSOI2008]球形空间产生器——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1013 Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在 ...
- 洛谷 P2747 [USACO5.4]周游加拿大Canada Tour 解题报告
P2747 [USACO5.4]周游加拿大Canada Tour 题目描述 你赢得了一场航空公司举办的比赛,奖品是一张加拿大环游机票.旅行在这家航空公司开放的最西边的城市开始,然后一直自西向东旅行,直 ...
- 使用 XHProf 分析你的 PHP 程序
个人说明: 注意: php5.5运行 xhprof_enable 会发生段错误Segmentation fault: ,这是一个已知的bug. 下面是报错测试脚本: function loader( ...
- LibreOJ #6221. 幂数 !(数论+dfs+剪枝)
写新题然后艹翻标程的感觉真是舒爽啊... 这题就是个dfs...先预处理出sqrt(n)范围内的素数,然后dfs构造合法的数就行了. 直接暴搜会TLE,需要剪一剪枝,不需要跑到最后一层再计算答案,边构 ...