说起Normal Map(法线贴图),就会想起Bump Map(凹凸贴图)。Bump Mapping是Blin大师在1978年提出的图形学算法,目的是以低代价给予计算机几何体以更丰富的表面信息(高模盖低模)。30年来,这项技术不断延展,尤其是计算机图形学成熟以后,相继出现了不少算法变体,90年代末的Normal Map解放了必须自行计算纹理像素法线的痛苦,新世纪以来相继又出现了Parallax Mapping, Relief Mapping等技术。抛开那些无聊的概念区分,它们的本体还是Bump Map,目的也是一致的。

1. 传统的Bump Map

如果你对纯净的Bump Map有兴趣,A Practical and Robust Bump-mapping Technique for Today's GPU应该是值得一看的论文。说Today,其实是GDC 2000的事情了,但对于传统的Bump Map的理论是很丰富的,我是没精力看完它啦……

那时候的Bump Map须要我们计算纹理图上每个像素的法线信息,简单的还可能做到,对复杂的纹理要搞清面光背光份量简直要命,于是就用Height Map,在一张高度图上记录每个像素对应的纹理位置的高度信息(这个比较容易办到,NEHE22也是这类)。看上去就是一张地形网格——这样的话,计算每个像素点的法线就不那么难了。XY方向相邻像素的高度相减就是两条正交的切向量,叉乘外加左/右手定则就获得法线。或者更精确点,用八邻域弄个边缘检测算子(sobel、拉普拉斯之类 )[图像处理里的空间域滤波],或者应用斜坡法([水效果Ⅲ - 抖动波] )来求切线、法线。

2. 制作NormalMap

但是这样还是挺麻烦的,既然都动用额外的贴图了,何不把这些与实现无关的预处理——作为结果的法线信息——都放进纹理里呢?这就是Normal Map的思想起源。但是,谁来做这样的一张法线图呢?敲定美工了。每个像素的RGB分别存储该像素对应法线的XYZ分量,只要把法线的分量由(-1,1)映射成(0,255)就可了。观察一张法线图,以蓝色为主,是因为朝向图面外的法线(0,0,1)都被编码成(0,0,127)了(读入OpenGL后即(0,0,0.5)),而图上越红的地方表明法线越向右,越绿的地方表明法线越向上,就可以理解了。总体来说,就是一张紫蓝色的图。怎么做这样的图呢?当然最好是有一个工具,输入原图和高度图后执行上述的算法得出新图了,事实上已经有很多这类工具了(譬如比较著名的photoshop的NV插件Normal Map Filter,甚至不用高度channel也可[效果- -]),以下几篇文章有详细介绍,有兴趣的可以看一看:

Tutorial On Normal Mapping (PHOTOSHOP [ENGLISH])
怎样用PhotoShop创建Bump Map图像 (PHOTOSHOP
[CHINESE])
Nvidia Normal Map 插件参数之详解 (PHOTOSHOP
[翻译])
GIMP normalmap plugin  
(GIMP   [ENG])

关于NormalMap制作的原理,更详细的可参考此文:Normalmap原理及去除接缝

3.
切线空间(Tangent Space)

其实这个概念前文已经提及了。每个像素根据高度图生成的三轴坐标系,就是被称为切线空间坐标系的东西,每个像素人手一个。可见Normal
Map里面每个像素的法线就是定义在这个切线空间的。注意,这些法线是属于像素的,而不是顶点,我们平时用的法线是顶点法线,是定义在模型坐标系的[乱弹OpenGL中的矩阵变换(上)]
,定义于所属物件的唯一的局部坐标系原点之上。而这些像素法线定义于切线坐标系,其原点就在该像素上,切线副法线在法线的垂直平面上。



(表面依然是平的,但通过搅动法线,使进入我们眼睛的光线强度不一,模拟出凹凸面漫反射的特点。图from GDNet)

应用这些像素法线的目的无非是计算出该像素的OutPut颜色:col = baseColor * (amb + diffuse) +
specular。这些都应该在像素着色器(fragment shader)里进行,因为我们要做的是针对每个像素的处理[Shader快速复习:Per
Pixel Lighting(逐像素光照)
]
。其中需要用到像素法线的是diffuse和specular(以前是用通过顶点法线线性插值而来的normal),法线分别与光线向量、半向量作点乘得到对应因子。这个因子是个夹角cos而已,所以只要满足像素法线与两个向量单位化并在同一坐标系下(而无论是哪个坐标系),夹角就是一定的。这样看来,两个选择:

1. 把像素法线都从各自的切线空间转到视图空间来,再点乘;
2.把光线向量、半向量从视图空间转到像素各自的切空间来,再点乘。

很多文章一口咬定就是第2种好,原因是第1种要变换N个量;第2种只变换2个量。仔细分析,其实两种选择变换的次数是一样的,都是2*N。说第2种好,是因为:

第1种必须在fragment shader里进行,对象是从Normal
Map读出的像素法线和经过线性插值而来的两个向量,它们不是同一坐标系的,按描述应该是各像素法线乘以各自一个的变换矩阵,转到视图空间来,但确实没有其他的可提供构筑这个矩阵的信息了,若有可能应该就是另外的varying变量传入了;

第2种可以选择在vertex
shader里进行,但是能不能就在这里变换到切线空间呢?假设可以,那么得到的针对顶点的数值在光栅化-线性插值后能否满足呢?

要回答这个问题,还得考虑像素的切线空间和顶点的切线空间之间的关系。是的,顶点法线也可以变换到切线空间,但这有什么用呢?一步一步来吧。先考虑切线空间在OpenGL世界里的次元位置:


(from paulsprojects)

为什么是紧挨模型坐标系呢?其实想想也能理解,在上面谈及切线坐标系的时候,并没有广阔的“世界”这个概念。只针对每个像素/顶点,无疑是比模型坐标系更狭隘的“世界观”,所以那个位置是适合的(箭头方向无所谓,坐标系之间是可以相互转换的)。其实对于某个具体的物体上的像素/顶点,你可以考虑那是把模型空间的原点平移到该像素/顶点上,各模型坐标系方向轴向量一起经过旋转,使Z轴与像素/顶点的法线重合,XY轴分别与像素/顶点的切线副法线重合——这只是一个仿射变换而已,如同模型/世界/视图空间之间的变换一样。

如果你记得图形学书上关于世界/视图空间的变换矩阵的构建的话,就更容易理解这样的形式了。从切线空间到模型空间的变换矩阵(TBN矩阵MTBN)为:

其中T,B,N是定义在模型空间的该像素/顶点的“切/副法/法向量”。稍微检验一下,考虑某个三角面上的某个顶点,其法线充当切线空间的Z轴,在切线空间中表示为(0,0,1),在OpenGL里解释为一个列向量(0,0,1)T,用上面的矩阵MTBN左乘该向量,得到(Nx,Ny,NzT,正是该向量在模型空间的表示。其他两轴同理。说明该矩阵把切线空间的坐标系统转换到模型空间了(一切变换都是在变换坐标系[乱弹OpenGL中的矩阵变换(上)]
)。当然这是特例说明,但确实这个矩阵包含仿射矩阵里的旋转元素了(它只包含旋转,不设置平移,是因为我们只需要它来变换向量,向量是可以任意平移的,若要弄完整的4X4矩阵,第4列平移列就是该顶点模型坐标)。具体推导也不难,随便Google一下"tangent
space"就出来一堆了,而且都是基本一样的推导过程,推一个:Tangent
Space

其逆变换(矩阵MTBN-1)就可以把向量从模型空间变换到对应顶点的切线空间了。如果你确保T,B,N两两垂直,这个正交矩阵的逆矩阵就是其转置矩阵,这很理想。但万一你不确保这点(涉及到具体应用,很多问题的,后面会说),就保证它们大致满足三叉状,用所谓的Gram-Schmidt
算法矫正:

T′ = T −
(N · T)N

B′ = B −
(N · B)N −
(T′ · B)T′

反正最后得到的是这样的形式——用它左乘光源向量和半向量,就得到对应于该顶点切线空间的光源向量和半向量了:

T′x
B′x
Nx
T′y
B′y
Ny
T′z
B′z
Nz
 

为什么是顶点?因为这是你唯一能取得其切线/副法线/法线的东西了。这也是之前说的选择1不行的原因,在那张Normal
Map里面已经没有任何法线副法线的确实信息了(只知道它们在法线垂直平面上),即使能通过别的方法取得(起码要增加传入数据),那要在fragment
shader里每像素人手又计算一个矩阵,这就又是一个“计算量”(不是次数)的问题。所以还是用选择2吧,也就是上面矩阵MTBN-1的讨论。

选择2的第一个问题现在很清楚了:是可以的。只要取得顶点的切线/副法线/法线数据就能建立矩阵并变换光源向量和半向量,但结果是针对顶点的,我们需要的是针对像素的。光栅化线性插值这两个向量,就是对应像素的值,但这对吗?直觉上不对,但结果显示这样做没有不妥(或者说不会与真实所须差太多)。一般文章都没有直接透视这个问题,其实考虑一个矩形平面就露馅了,它四个顶点的TBN一致,变换得的光源向量也该一致,插值后得光源向量也该一致,但NormalMap中的像素有各自不同的切线空间系统,光源向量不该一致的呃(虽则同向光源、不同法线足够形成凹凸效果)。所以我对选择2的第二个问题保持疑问,有道深者请为鄙人指点迷津!

反正即使计算两向量夹角的计算可能会有偏差,也不会太离谱,问题到此结束。至于有的文章提及对diffuse的计算,光源向量插值后不须再归一化的问题(我尝试过,整体会变暗一点),就不深入了。注意我们在vertex
shader里变换到切线空间的是模型空间下的光源向量和视线向量(半向量是它们的和),而一般这两个向量定义在视图空间,所以之前还要做一个视图空间->模型空间的变换(用ModelView矩阵的逆矩阵)。这是很多文章囫囵掉的一点。但如果你能取得视图空间下的顶点TBN,也不需。因为切线/副法线/法线若是被变换到视图空间,则上面的TBN矩阵MTBN就是把东西从该顶点的切线空间变换到视图空间(道理是一样的),MTBN-1就能把视图空间下的这两个向量变换到该顶点的切线空间(参见下篇的代码)。

最后的问题:怎么去取得模型空间下的顶点的切线,副法线,法线?

转载: http://www.zwqxin.com/archives/shaderglsl/review-normal-map-bump-map-2.html

1.
怎样获得顶点的TBN

其实我觉得这个是实践部分最麻烦的地方。OpenGL提供了诸如glNormal、normal-vbo之类的接口设置顶点的法线,然后在shader中以gl_Normal等方式取得顶点法线数据,但是没有提供切线和副法线的。当然两者只要其一就足够了(另一者可通过叉乘和左/右手定则获得)。因为要把TBN导入shader,干脆就设置attribute变量,记录每个顶点的切线。切线一般就是相邻顶点的差向量了(其实这有时候是非常繁重的工作)。

如果是通常的3DS模型的话,顶点法线是共顶点的面的面法线的加权,这样法线就不一定垂直于某个面,即与切线不垂直。但只要它们还是近似垂直的,上篇提及的Gram-Schmidt
算法应该可以处理。或者在shader中,把法线与切线叉乘出副法线,再用法线与副法线叉乘得新的切线,也能确保两两垂直。这样之前的TBN矩阵的转置矩阵就能直接作为其逆矩阵,完成向量从模型坐标系往切线空间坐标系的变换了。

问题不只这样。对于一些模型,共享顶点的三角面片面法线差角太大,这时候计算出的该顶点法线和切线就可能带来麻烦。在橙书(OpenGL
Shading
Language)中,谈及了切线必须是一致的(consistently),面片相邻的顶点切线不应该差距太大。但若相邻面片夹角太大,得到的该顶点法线就可能与“共享该顶点的面片”上的其他顶点的法线差异很大,从而切线也会相差很大,直接导致光向量等在这两顶点的切线空间差异很大,插值的各个针对像素的光向量方向差异很大,与像素法线点乘的cos也会差异得很明显(而现实中一般的凹凸面漫反射光线不会有太大方向差异)。解决方法是把该出了问题的顶点拆成两个(原地拷贝,3DS模型就不用了-
-),一个面片用一个,其法线只受所属的面片的面法线决定(这样最后会形成突出的边缘,但夹角大的面片之间实际上就应该会是有这样的效果吧)。

另一个问题,我们向shader传入顶点法线切线,希望副法线由两者叉乘得出。但既然叉乘就有个方向问题(结果可以有两个方向,AXB与BXA是不一样的,我以前弄shadow
volume就曾被它这种特性作弄过)。AXB改成BXA实际上会导致凹凸感反向,原来凹的变凸了,原来凸的变凹了(要仔细比对,不然会有首因效应)。一般就用N
X T吧,因为基本上都是这个顺序的,结果也符合原Normal Map。

2.
GLSL 1.2 Shader实现代码

没什么好说的,就是前面算法翻译成GLSL。

Vertex
Shader:

  1. // vertex shader
  2. uniform vec3 lightpos; //传入光源的模型坐标吧
  3. uniform vec4 eyepos;
  4. varying vec3 lightdir;
  5. varying vec3 halfvec;
  6. varying vec3 norm;
  7. varying vec3 eyedir;
  8. attribute vec3 rm_Tangent;
  9. void main(void)
  10. {
  11. vec4 pos = gl_ModelViewMatrix * gl_Vertex;
  12. pos = pos / pos.w;
  13. //把光源和眼睛从模型空间转换到视图空间
  14. vec4 vlightPos = (gl_ModelViewMatrix * vec4(lightpos, 1.0));
  15. vec4 veyePos   = (gl_ModelViewMatrix * eyepos);
  16. lightdir = normalize(vlightPos.xyz - pos.xyz);
  17. vec3 eyedir = normalize(veyePos.xyz - pos.xyz);
  18. //模型空间下的TBN
  19. norm = normalize(gl_NormalMatrix * gl_Normal);
  20. vec3 vtangent  = normalize(gl_NormalMatrix * rm_Tangent);
  21. vec3 vbinormal = cross(norm,vtangent);
  22. //将光源向量和视线向量转换到TBN切线空间
  23. lightdir.x = dot(vtangent,  lightdir);
  24. lightdir.y = dot(vbinormal, lightdir);
  25. lightdir.z = dot(norm     , lightdir);
  26. lightdir = normalize(lightdir);
  27. eyedir.x = dot(vtangent,  eyedir);
  28. eyedir.y = dot(vbinormal, eyedir);
  29. eyedir.z = dot(norm     , eyedir);
  30. eyedir = normalize(eyedir);
  31. halfvec = normalize(lightdir + eyedir);
  32. gl_FrontColor = gl_Color;
  33. gl_TexCoord[0] = gl_MultiTexCoord0;
  34. gl_Position = ftransform();
  35. }

传入的lightPos,eyePos,gl_Vertex,gl_Normal,rm_Tangent是其模型坐标系下的坐标、向量,乘以ModelView矩阵(法线切线乘以ModelView矩阵的转置逆矩阵)到了视图空间(vlightPos,veyePos,pos,norm,
vtangent);在视图空间它们已经有了“世界”的概念了,因此可以平等地相互影响(在各自封闭的模型空间是享受不了的),可以作各种点乘叉乘加减乘除计算。

注意,lightPos,eyePos虽说是在其各自模型坐标系下定义的,但不对它们弄什么平移旋转缩放操作的话,其模型矩阵就是一单位阵,此时其“世界坐标
==
模型坐标”。所以这时我可以当它是在世界空间定义的坐标(实际上一般我们都会在世界空间定义这两个点)。(注意,前提是不对它们做模型变换。)

从以上量得到光源向量、视线向量后(它们在视图空间),N、T叉乘得B(注意它们现在都在视图空间),通过TBN矩阵逆矩阵把两向量变换到当前顶点的切线空间,交给光栅去插值。

对以上有不理解的朋友,可能是没看上篇:[shader复习与深入:Normal
Map(法线贴图)Ⅰ
]

fragment
shader:

    1. //fragment shader
    2. uniform float shiness;
    3. uniform vec4 ambient, diffuse, specular;
    4. uniform sampler2D bumptex;
    5. uniform sampler2D basetex;
    6. float amb = 0.2;
    7. float diff = 0.2;
    8. float spec = 0.6;
    9. varying vec3 lightdir;
    10. varying vec3 halfvec;
    11. varying vec3 norm;
    12. varying vec3 eyedir;
    13. void main(void)
    14. {
    15. vec3 vlightdir = normalize(lightdir);
    16. vec3 veyedir = normalize(eyedir);
    17. vec3 vnorm =   normalize(norm);
    18. vec3 vhalfvec =  normalize(halfvec);
    19. vec4 baseCol = texture2D(basetex, gl_TexCoord[0].xy);
    20. //Normal Map里的像素normal定义于该像素的切线空间
    21. vec3 tbnnorm = texture2D(bumptex, gl_TexCoord[0].xy).xyz;
    22. tbnnorm = normalize((tbnnorm  - vec3(0.5))* 2.0);
    23. float diffusefract =  max( dot(lightdir,tbnnorm) , 0.0);
    24. float specularfract = max( dot(vhalfvec,tbnnorm) , 0.0);
    25. if(specularfract > 0.0){
    26. specularfract = pow(specularfract, shiness);
    27. }
    28. gl_FragColor = vec4(amb * ambient.xyz * baseCol.xyz

NormalMap 贴图 【转】的更多相关文章

  1. NormalMap 贴图 [转]

    转载: http://www.zwqxin.com/archives/shaderglsl/review-normal-map-bump-map.html   说起Normal Map(法线贴图),就 ...

  2. SpriteBuilder实现2D精灵光影明暗反射效果(一)

    其实不用3D建模,用2D的图像就可以模拟3D场景中光照反射的效果. 这里我们不得不提到一个normalMap(法线图)的概念,请各位童鞋自己度娘吧,简单来说它可以使得2D表面生成一定细节程度的光照方向 ...

  3. NormalMap 法线贴图

    法线贴图+纹理贴图(细节明显) 纹理贴图 法线贴图 法线贴图 存储法线的一张贴图,归一化的法线的 xyz 的值被映射成为对应的 RGB 值.归一化的法线值为[-1,1],RGB的每一个分量为无符号的8 ...

  4. Esfog_UnityShader教程_NormalMap法线贴图

    咳咳,好久没有更新了,一来是这段时间很忙很忙,再来就是自己有些懒了,这个要不得啊,赶紧补上.在前面我们已经介绍过了漫反射和镜面反射,这两个是基本的光照类型,仅仅依靠它们就想制作出精美的效果是远远不够的 ...

  5. Unity3d《Shader篇》法线贴图

    效果图 贴图 法线贴图 //代码 Shader "Custom/NormalMap" { Properties { _MainTex ("Texture", 2 ...

  6. 在 OpenGL ES 2.0 上实现视差贴图(Parallax Mapping)

    在 OpenGL ES 2.0 上实现视差贴图(Parallax Mapping) 视差贴图 最近一直在研究如何在我的 iPad 2(只支持 OpenGL ES 2.0, 不支持 3.0) 上实现 视 ...

  7. 翻译:非常详细易懂的法线贴图(Normal Mapping)

    翻译:非常详细易懂的法线贴图(Normal Mapping) 本文翻译自: Shaders » Lesson 6: Normal Mapping 作者: Matt DesLauriers 译者: Fr ...

  8. Shader中贴图知识汇总: 漫反射贴图、凹凸贴图、高光贴图、 AO贴图、环境贴图、 光照纹理及细节贴图

    原文过于冗余,精读后做了部分简化与测试实践,原文地址:http://www.j2megame.com/html/xwzx/ty/2571.html   http://www.cnblogs.com/z ...

  9. Unity3D ShaderLab法线贴图

    Unity3D ShaderLab法线贴图 说到法线贴图,应该算是我们最常使用的一种增强视觉效果的贴图.将法线贴图的各个像素点座位模型的法线,这样我们的光照可以模拟出高分辨率的效果, 同时也保持较低的 ...

随机推荐

  1. python基础(2)---数据类型

    1.python版本间的差异: 2.x与3.x版本对比 version 2.x 3.x print print " "或者print()打印都可以正常输出 只能print()这种形 ...

  2. Java Web学习脑图

    Java Web学习脑图,从知乎上摘录,感谢知乎网友的分享.

  3. 181. Employees Earning More Than Their Managers

    The Employee table holds all employees including their managers. Every employee has an Id, and there ...

  4. Go语言标准包之json编码

    标准的就简单通用. package main import ( "encoding/json" "fmt" "log" ) func mai ...

  5. CentOS7.5安装配置conky(极简)

    1.安装epel源 下载地址:http://dl.fedoraproject.org/pub/epel/ 找到epel-release-XXXXXXX.rpm文件,下载解压 rpm -ivh epel ...

  6. 五十九 数据库访问 使用MySQL

    MySQL是Web世界中使用最广泛的数据库服务器.SQLite的特点是轻量级.可嵌入,但不能承受高并发访问,适合桌面和移动应用.而MySQL是为服务器端设计的数据库,能承受高并发访问,同时占用的内存也 ...

  7. PAT L3-002. 堆栈

    树状数组,二分. 一堆数字,可以删除栈顶,压入数字,求中位数,可以线段树,也可以树状数组上二分. #include<map> #include<set> #include< ...

  8. mac MyEclipse2017 CI10安装破解心得

    前段时间也不知弄了什么东西把之前的me弄坏了,于是看看新版本的情况,准备安装个新版本,一看出了ci10,安装之. 破解资源请到这里下载 https://download.csdn.net/downlo ...

  9. 关于 Unity WebGL 的探索(一)

    到今天为止,项目已经上线一个多月了,目前稳定运行,各种 bug 也是有的.至少得到了苹果的两次推荐和 TapTap 一次首页推荐,也算是结项后第一时间对我们项目的一个肯定. 出于各种各样的可描述和不可 ...

  10. 【BZOJ 4567】【SCOI 2016】背单词

    http://www.lydsy.com/JudgeOnline/problem.php?id=4567 贪心. 任何不用第一种情况的方案吃的泡椒数都小于\(n^2\),所以最小泡椒数的方案一定不包含 ...