https://www.lydsy.com/JudgeOnline/problem.php?id=5301

https://www.luogu.org/problemnew/show/P4462

已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子序列满足异或和等于 k 。
也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]^a[x+1]^…^a[y]=k的x,y有多少组。

开始时还在想怕不是一棵主席树(滑稽)。

想多了,莫队足以解决。

为了方便求区间异或和,把a处理为前缀异或和。

剩下的看代码吧,不太好说,就是注意左端点的移动是要把它之前的点增/删,因为l~r的异或=a[r]^a[l-1]。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct qu{
int pos,l,r;
}q[N];
int a[N],ans[N],cnt[N],sum,n,m,k,s;
inline int bel(int x){return (x-)/s+;}
bool cmp(qu b,qu c){
return bel(b.l)==bel(c.l)?b.r<c.r:b.l<c.l;
}
inline void add(int x){
sum+=cnt[x^k];
cnt[x]++;
}
inline void del(int x){
cnt[x]--;
sum-=cnt[x^k];
}
int main(){
n=read(),m=read(),k=read();
s=sqrt(n);
for(int i=;i<=n;i++)a[i]=a[i-]^read();
for(int i=;i<=m;i++){
q[i].pos=i;q[i].l=read();q[i].r=read();
}
sort(q+,q+m+,cmp);
int ql=,qr=;cnt[]++;
for(int i=;i<=m;i++){
while(qr<q[i].r)add(a[++qr]);
while(qr>q[i].r)del(a[qr--]);
while(ql<q[i].l)del(a[ql-]),ql++;
while(ql>q[i].l)ql--,add(a[ql-]);
ans[q[i].pos]=sum;
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5301:[CQOI2018]异或序列——题解的更多相关文章

  1. BZOJ5301: [Cqoi2018]异或序列(莫队)

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 400  Solved: 291[Submit][Status ...

  2. [bzoj5301][Cqoi2018]异或序列_莫队

    异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...

  3. bzoj5301[CQOI2018]异或序列

    题意 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所有的 x,y (l ...

  4. BZOJ5301:[CQOI2018]异或序列(莫队)

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

  5. BZOJ5301 [Cqoi2018]异或序列 【莫队】

    题目链接 BZOJ5301 题解 莫队水题 BZOJ400AC纪念 #include<algorithm> #include<iostream> #include<cst ...

  6. 2018.08.12 bzoj5301: [Cqoi2018]异或序列(前缀和+莫队)

    传送门 简单的异或前缀和处理+莫队统计答案. 惊奇的发现无论开不开long long都能跑过... 代码: #include<bits/stdc++.h> #define N 100005 ...

  7. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  8. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  9. 「luogu4462」[CQOI2018] 异或序列

    「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...

随机推荐

  1. libevent学习四(Working with events)

    1.事件的分类 文件可写 文件可读 超时发生 信号发生 用户触发事件   2事件的生命周期        --非 persistent                                 ...

  2. 远离服务器宕机,腾讯WeTest正式推出服务器深度性能测试服务

    WeTest 导读 随着城市发展趋向智慧化,不仅移动互联网应用正迅速融入出行.金融.医疗.娱乐等传统行业,跟随移动互联网成长起来的,还有用户对应用使用与消费的理性意识. 而在用户不断增加的同时,如何避 ...

  3. C# 调用webserver 出现:未能从程序集“jgd3jufm, Version=0.0.0.0, Culture=neutral, PublicKeyToken=null”中加载类型

    一般都是 用的动态调用webserver,然后这次用的是固定的 首先 最后 实例化改接口,然后直接传值调用

  4. python3 爬虫爬取深圳公租房轮候库(深圳房网)

    深圳公租房轮候库已经朝着几十万人的规模前进了,这是截至16年10月之前的数据了,贴上来大家体会下 所以17年已更新妥妥的10W+ 今天就拿这个作为爬虫的练手项目 1.环境准备: 操作系统:win10 ...

  5. HDU - 6444(单调队列+思维)

    链接:HDU - 6444 题意:给出一个包含 n 个数的环,每个数都有一个价值,起点任选,每次跳顺时针跳 k 个数,在哪个数就能获得该价值(包括起点),最多取 m 次,问最少需要补充多少价值,所拿的 ...

  6. 【转】unity3d 在UGUI中制作自适应调整大小的滚动布局控件

    转自 http://blog.csdn.net/rcfalcon/article/details/43459387 在游戏中,我们很多地方需要用到scroll content的概念:我们需要一个容器, ...

  7. UML类图(Class Diagram)中类与类之间的关系及表示方式(转)

    源地址:https://blog.csdn.net/a19881029/article/details/8957441 ======================================== ...

  8. asp.net mvc5 模式的现象思考

    .net mv5简化了一些应用逻辑,与其说是mvc架构模式,不如说应用.net Entity更好. 现在你只需要去随便创建一个类 相关数据 然后用一个类去继承 DbContext 定义一个 DbSet ...

  9. HADOOP docker(三):HDFS高可用实验

      前言1.机器环境2.配置HA2.1 修改hdfs-site.xml2.2 设置core-site.xml3.配置手动HA3.1 关闭YARN.HDFS3.2 启动HDFS HA4.配置自动HA4. ...

  10. 下载 编译 Android源代码 和 Android kernel源代码

    下载Android源码简要流程 : a. 获取repo文件: curl http://commondatastorage.googleapis.com/git-repo-downloads/repo ...