POJ3384:Feng Shui——题解
http://poj.org/problem?id=3384
题目大意:给一个顺时针序的多边形,求在里面放半径为r的两个圆使得两圆覆盖的面积最大,求出这样的圆的坐标。
————————————————
解题思路:将多边形内缩进r,然后求内核。
枚举点对然后根据点对距离判断是否覆盖面积最大即可。
注意:可能两圆重合。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<stack>
#include<cmath>
#include<algorithm>
using namespace std;
typedef double dl;
const dl eps=1e-;
const int N=;
struct Point{
dl x;
dl y;
}p[N],point[N],q[N],z;
//point,初始点
//q,暂时存可行点
//p,记录可行点
int n,curcnt,cnt;
dl r;
//curcnt,暂时存可行点个数
//cnt,记录可行点个数
inline Point getmag(Point a,Point b){
Point s;
s.x=b.x-a.x;s.y=b.y-a.y;
return s;
}
inline dl multiX(Point a,Point b){
return a.x*b.y-b.x*a.y;
}
inline void getline(Point x,Point y,dl &a,dl &b,dl &c){
a=y.y-x.y;
b=x.x-y.x;
c=y.x*x.y-x.x*y.y;
return;
}
inline Point intersect(Point x,Point y,dl a,dl b,dl c){
Point s;
dl u=fabs(a*x.x+b*x.y+c);
dl v=fabs(a*y.x+b*y.y+c);
s.x=(x.x*v+y.x*u)/(u+v);
s.y=(x.y*v+y.y*u)/(u+v);
return s;
}
inline void cut(dl a,dl b,dl c){
curcnt=;
for(int i=;i<=cnt;i++){
if(a*p[i].x+b*p[i].y+c>-eps)q[++curcnt]=p[i];
else{
if(a*p[i-].x+b*p[i-].y+c>eps){
q[++curcnt]=intersect(p[i],p[i-],a,b,c);
}
if(a*p[i+].x+b*p[i+].y+c>eps){
q[++curcnt]=intersect(p[i],p[i+],a,b,c);
}
}
}
for(int i=;i<=curcnt;i++)p[i]=q[i];
p[curcnt+]=p[];p[]=p[curcnt];
cnt=curcnt;
return;
}
inline void init(){
for(int i=;i<=n;i++)p[i]=point[i];
z.x=z.y=;
p[n+]=p[];
p[]=p[n];
point[n+]=point[];
cnt=n;
return;
}
inline void regular(){//调换方向
for(int i=;i<(n+)/;i++)swap(point[i],point[n-i]);
return;
}
inline dl dis(Point a,Point b){
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
inline void solve(){
init();
for(int i=;i<=n;i++){
Point ta,tb,tt;
tt.x=point[i+].y-point[i].y;
tt.y=point[i].x-point[i+].x;
dl k=r/sqrt(tt.x*tt.x+tt.y*tt.y);
tt.x*=k;tt.y*=k;
ta.x=point[i].x+tt.x;
ta.y=point[i].y+tt.y;
tb.x=point[i+].x+tt.x;
tb.y=point[i+].y+tt.y;
dl a,b,c;
getline(ta,tb,a,b,c);
cut(a,b,c);
}
return;
}
int main(){
scanf("%d%lf",&n,&r);
for(int i=;i<=n;i++){
scanf("%lf%lf",&point[i].x,&point[i].y);
}
solve();
int x,y;
dl res=-;
for(int i=;i<=cnt;i++){
for(int j=i;j<=cnt;j++){
dl tmp=dis(p[i],p[j]);
if(tmp>res){
res=tmp;
x=i;
y=j;
}
}
}
printf("%.4f %.4f %.4f %.4f\n",p[x].x,p[x].y,p[y].x,p[y].y);
return ;
}
POJ3384:Feng Shui——题解的更多相关文章
- POJ3384 Feng Shui
嘟嘟嘟 昨天我看到的这道题,今天终于A了. 写这道题的时间其实并不长,主要是我为这题现学了一个半平面相交(虽然是\(O(n ^ 2)\)的--) 思路说难也不难,关键是第一步的转化得想到. 首先可以肯 ...
- POJ 3384 Feng Shui (半平面交)
Feng Shui Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3743 Accepted: 1150 Speci ...
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description Feng shui is the ancient Chinese practice of placement and arrangement of space to achie ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
随机推荐
- 【费元星】crt 无法上传文件,总是显示盾牌表示-完美解决
将如下内容保存到文件中,已.bat 结尾 taskkill /f /im explorer.exeattrib -s -r -h "%userprofile%\AppData\Local\i ...
- android学习七 菜单
1.菜单分类 常规菜单 子菜单 上下文菜单 图标菜单 辅助菜单 交替菜单 2.菜单类 andriod.view.menu 3.菜单的参数 名称:字符串标题 菜单ID:整数 ...
- libevent学习二(Working with an event loop)
Runing the loop #define EVLOOP_ONCE 0x01 #define EVLOOP_NONBLOCK 0x02 #define EV ...
- PostFix支持SMTP认证
安装cyrus-sasl yum -y install cyrus-sasl* 启动服务,开机启动 service saslauthd start chkconfig saslauthd on 配置p ...
- Unity编辑器 - 使用GL绘制控件
Unity编辑器 - 使用GL绘制控件 控件较为复杂时,可能造成界面卡顿,在EditorGUI中也可以灵活使用GL绘制来提升性能. 以绘制线段为例: using UnityEngine; using ...
- Linux文件系统简介和软链接和硬链接的区别
Linux有着极其丰富的文件系统,大体可分为如下几类: 网络文件系统:如nfs.cifs等: 磁盘文件系统:如ext3.ext4等: 特殊文件系统:如prco.sysfs.ramfs.tmpfs等: ...
- leetcode-位1的个数(位与运算)
位1的个数 编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例 : 输入: 11 输出: 3 解释: 整数 11 的二进制表示为 00000 ...
- 基于深度学习的中文语音识别系统框架(pluse)
目录 声学模型 GRU-CTC DFCNN DFSMN 语言模型 n-gram CBHG 数据集 本文搭建一个完整的中文语音识别系统,包括声学模型和语言模型,能够将输入的音频信号识别为汉字. 声学模型 ...
- cookie,localstorge,sessionstorge三者总结
相同点:都是客户端存储东西的: 不同: 1大小,cookie最小;locastorge最大 2 cookie设置好会在header头里面自动带的:但是ls和ss不会:ls同个浏览下不同网页(非跨域)都 ...
- Java学习个人备忘录之内部类
内部类: 将一个类定义在另一个类的里面,对里面那个类就称为内部类. class Outer { private int num = 3; class Inner //它想访问Outer中的num, 如 ...