The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17768   Accepted: 8104

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

Source

模板题:

 //168K    16MS    C++    960B    2014-06-03 12:15:26
#include<iostream>
#include<vector>
#define N 205
using namespace std;
vector<int>V[N];
int vis[N];
int match[N];
int n,m;
int dfs(int u)
{
for(int i=;i<V[u].size();i++){
int v=V[u][i];
if(!vis[v]){
vis[v]=;
if(match[v]==- || dfs(match[v])){
match[v]=u;
return ;
}
}
}
return ;
}
int hungary()
{
memset(match,-,sizeof(match));
int ret=;
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
ret+=dfs(i);
}
return ret;
}
int main(void)
{
int k,a;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++) V[i].clear();
for(int i=;i<=n;i++){
scanf("%d",&k);
while(k--){
scanf("%d",&a);
V[i].push_back(a);
}
}
printf("%d\n",hungary());
}
return ;
}

poj 1274 The Perfect Stall (二分匹配)的更多相关文章

  1. poj 1274 The Prefect Stall - 二分匹配

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22736   Accepted: 10144 Description Far ...

  2. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  3. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  4. poj——1274 The Perfect Stall

    poj——1274   The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25709   A ...

  5. POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24081   Accepted: 106 ...

  6. [题解]poj 1274 The Perfect Stall(网络流)

    二分匹配传送门[here] 原题传送门[here] 题意大概说一下,就是有N头牛和M个牛棚,每头牛愿意住在一些牛棚,求最大能够满足多少头牛的要求. 很明显就是一道裸裸的二分图最大匹配,但是为了练练网络 ...

  7. POJ-1274The Perfect Stall,二分匹配裸模板题

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23313   Accepted: 103 ...

  8. poj 1274 The Perfect Stall【匈牙利算法模板题】

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20874   Accepted: 942 ...

  9. poj —— 1274 The Perfect Stall

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26274   Accepted: 116 ...

随机推荐

  1. ioc解析

    引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明式事务等功能在此基础上开花结果.但是IoC这个重要的概念却比较晦涩隐讳,不容易让人望文生义,这不能不 ...

  2. SpringBoot-04:SpringBoot在idea中的俩种创建方式

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 创建SpringBoot工程有很多种方式,我只讲俩种最为常见的 一,依托springboot官网提供的模板.( ...

  3. 用wireshark查看 tcpdump 抓取的mysql交互数据

    用tcpdump  抓取 mysql客户端与服务器端的交互 1开启tcpdump tcpdump -i eth0 -s 3000 port 3306 -w ~/sql.pcap 先故意输入一个错误的密 ...

  4. Ruby 基础教程 1-1

    1.指定编码方式       第一种 在代码文件首行通过 #encoding:GBK的方式     第二种  ruby -E UTF-8 文件名称     第三种  irb  -E UTF-8   2 ...

  5. lintcode 二分查找

    题目:二分查找 描述:给定一个排序的整数数组(升序)和一个要查找的整数target,用O(logn)的时间查找到target第一次出现的下标(从0开始),如果target不存在于数组中,返回-1. c ...

  6. 【转】unity 热更新思路和实现

    声明:本文介绍的热更新方案是我在网上搜索到的,然后自己修改了一下,相当于是借鉴了别人的思路,加工成了自己的,在此感谢无私分享经验的朋友们. 想要使用热更新技术,需要规划设计好资源比较策略,资源版本,确 ...

  7. 关于GitHub推送时发生Permission denied (publickey)的问题

    今天在学习廖雪峰老师官网的git教程“添加远程库”时发现总是推送失败,下边提示“Permission denied (publickey) 这个问题” 传送门:https://www.liaoxuef ...

  8. ThinkPHP - 5 - 学习笔记(2015.4.15)

    ThinkPHP __construct()和__initialize() 1.__initialize()不是php类中的函数,php类的构造函数只有__construct().2.类的初始化:子类 ...

  9. POJ 2287 田忌赛马 贪心算法

    田忌赛马,大致题意是田忌和国王赛马,赢一局得200元,输一局输掉200元,平局则财产不动. 先输入一个整数N,接下来一行是田忌的N匹马,下一行是国王的N匹马.当N为0时结束. 此题为贪心算法解答,有两 ...

  10. codeforces 295C Greg and Friends(BFS+DP)

    One day Greg and his friends were walking in the forest. Overall there were n people walking, includ ...