The Perfect Stall
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 17768   Accepted: 8104

Description

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

Input

The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

Output

For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

Sample Input

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

Sample Output

4

Source

模板题:

 //168K    16MS    C++    960B    2014-06-03 12:15:26
#include<iostream>
#include<vector>
#define N 205
using namespace std;
vector<int>V[N];
int vis[N];
int match[N];
int n,m;
int dfs(int u)
{
for(int i=;i<V[u].size();i++){
int v=V[u][i];
if(!vis[v]){
vis[v]=;
if(match[v]==- || dfs(match[v])){
match[v]=u;
return ;
}
}
}
return ;
}
int hungary()
{
memset(match,-,sizeof(match));
int ret=;
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
ret+=dfs(i);
}
return ret;
}
int main(void)
{
int k,a;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++) V[i].clear();
for(int i=;i<=n;i++){
scanf("%d",&k);
while(k--){
scanf("%d",&a);
V[i].push_back(a);
}
}
printf("%d\n",hungary());
}
return ;
}

poj 1274 The Perfect Stall (二分匹配)的更多相关文章

  1. poj 1274 The Prefect Stall - 二分匹配

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 22736   Accepted: 10144 Description Far ...

  2. POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配

    两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...

  3. Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配)

    Luogu 1894 [USACO4.2]完美的牛栏The Perfect Stall / POJ 1274 The Perfect Stall(二分图最大匹配) Description 农夫约翰上个 ...

  4. poj——1274 The Perfect Stall

    poj——1274   The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 25709   A ...

  5. POJ 1274 The Perfect Stall、HDU 2063 过山车(最大流做二分匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24081   Accepted: 106 ...

  6. [题解]poj 1274 The Perfect Stall(网络流)

    二分匹配传送门[here] 原题传送门[here] 题意大概说一下,就是有N头牛和M个牛棚,每头牛愿意住在一些牛棚,求最大能够满足多少头牛的要求. 很明显就是一道裸裸的二分图最大匹配,但是为了练练网络 ...

  7. POJ-1274The Perfect Stall,二分匹配裸模板题

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23313   Accepted: 103 ...

  8. poj 1274 The Perfect Stall【匈牙利算法模板题】

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 20874   Accepted: 942 ...

  9. poj —— 1274 The Perfect Stall

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26274   Accepted: 116 ...

随机推荐

  1. Shr-前端汇总

    F7控件监听 f7控件的监听是指,在点击F7控件时,对控件内的内容进行选中后出发该事件监听:通过参数value可以获取当前F7控件的一些值信息. //人力编制方案监听 回写计划期间 及分录数据 ini ...

  2. 3551: [ONTAK2010]Peaks加强版

    3551: [ONTAK2010]Peaks加强版 https://www.lydsy.com/JudgeOnline/problem.php?id=3551 分析: kruskal重构树 +  倍增 ...

  3. url和uri的一些问题

    一 url和uri的区别: uri: uniform resource identifier,统一资源标识符. url: uniform resource locator,统一资源定位符. 做一个类比 ...

  4. Android官方开发文档Training系列课程中文版:目录

    Android官方开发文档Training系列课程中文版:目录   引言 在翻译了一篇安卓的官方文档之后,我觉得应该做一件事情,就是把安卓的整篇训练课程全部翻译成英文,供国内的开发者使用,尤其是入门开 ...

  5. hive和关系型数据库

    1)hive和关系型数据库存储文件的系统不同.  hive使用hdfs(hadoop的分布式文件系统),关系型数据库则是服务器本地的文件系统: 2)hive使用的计算模型是mapreduce,而关系型 ...

  6. hdu1848Fibonacci again and again(sg函数)

    Fibonacci again and again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  7. Java 输出对象为字符串 工具类

    public static String reflectionToString(Object o){ if(o == null) return StringUtils.EMPTY; StringBui ...

  8. 用Python实现一个端口扫描,只需简单几步就好

    一.常见端口扫描的原理 0.秘密扫描 秘密扫描是一种不被审计工具所检测的扫描技术. 它通常用于在通过普通的防火墙或路由器的筛选(filtering)时隐藏自己. 秘密扫描能躲避IDS.防火墙.包过滤器 ...

  9. redis 面试

    Redis有哪些数据结构? 字符串String.字典Hash.列表List.集合Set.有序集合SortedSet. 如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog.G ...

  10. java DTO 转 POJO

    如果这两个类的要转化的属性其属性名不一样的话,那只能用get和set方法赋值 如果你的两个类要转化的属性名都一样,那可以用org.springframework.beans.BeanUtils这个类来 ...