artifacts    纰漏

个人总结不一定对:图像复原中损失高频信息的话会产生振铃效应。

理想低通滤波器在频率域的形状为矩形,那么其傅立叶逆变换在时间域为sinc函数

图像处理中,对一幅图像进行滤波处理,若选用的频域滤波器具有陡峭的变化,则会使滤波图像产生“振铃”,所谓“振铃”,就是指输出图像的灰度剧烈变化处产生的震荡,就好像钟被敲击后产生的空气震荡。如下图:

振铃现象产生的本质原因是:

对于辛格函数sinc而言,经过傅里叶变换之后的函数形式为窗函数(理想低通滤波器)形式,用图像表示如下:

图1.左边为矩形窗函数,右边为辛格函数(将左边的空域换成频域,右边频域换成空域)

因此凡具有接近窗函数的滤波器,IFT之后,其空域函数形式多少接近sinc函数。sinc是进行图像滤波的主要因素,两边的余波将对图像产生振铃现象

由卷积定理可将下面两种增强联系起来:

频域增强:

空域卷积:

其中f,g,h分别为输入图像,增强图像,空域滤波函数;F,G,H分别为各自的傅里叶变换。*为卷积符号。

在空间域将低通滤波作为卷积过程来理解的关键是h(x,y)的特性:可将h(x,y)分为两部分:原点处的中心部分,中心周围集中的成周期分布的外围部分。前者决定模糊,后者决定振铃现象。若外围部分有明显的震荡,则g(x,y)会出现振铃。利用傅里叶变换,我们发现,若频域滤波函数具有陡峭变化,则傅里叶逆变换得到的空域滤波函数会在外围出现震荡。

下面给出三个常用的低通滤波器:理想型、巴特沃斯型、高斯型

并分析他们对用的空域滤波函数的特点,验证上述结论。

理想型:

理想型滤波会出现振铃,可以看出空域滤波函数图像外围有剧烈震荡。

巴特沃斯型

为阶数,1阶巴特沃斯没有“振铃“,随着阶数增大,振铃现象越发明显。下图取n=2,可以看出空域函数外围部分出现震荡。

高斯型:

高斯函数的傅里叶变换仍然是高斯函数,故高斯型滤波器不会产生“振铃“。

上述图像的生成程序:

  1. close all;
  2. clear all;
  3. d0=8;
  4. M=60;N=60;
  5. c1=floor(M/2);
  6. c2=floor(N/2);
  7. h1=zeros(M,N);      %理想型
  8. h2=zeros(M,N);      %巴特沃斯型
  9. h3=zeros(M,N);      %高斯型
  10. sigma=4;
  11. n=4;%巴特沃斯阶数
  12. for i=1:M
  13. for j=1:N
  14. d=sqrt((i-c1)^2+(j-c2)^2);
  15. if d<=d0
  16. h1(i,j)=1;
  17. else
  18. h1(i,j)=0;
  19. end
  20. h2(i,j)=1/(1+(d/d0)^(2*n));
  21. h3(i,j)=exp(-d^2/(2*sigma^2));
  22. end
  23. end
  24. draw2(h1,'理想');
  25. draw2(h2,'巴特沃斯');
  26. draw2(h3,'高斯');
  27. function draw2(h,name)
  28. figure;
  29. surf(h);title(strcat('频域',name));
  30. fx=abs(ifft2(h));
  31. fx=fftshift(fx);
  32. figure;surf(fx);title(strcat('空域',name));

注:fftshift与ifftshift区别,对偶数行列矩阵相同,奇数相互弥补,组合使之可逆

如何理解振铃效应? - 知乎https://www.zhihu.com/question/29861707

图像处理之—振铃现象 - CSDN博客http://blog.csdn.net/zk_j1994/article/details/53645044


傅立叶变换中的吉布斯现象

 吉布斯(Gibbs)现象:将具有不连续点的周期函数(如矩形脉冲)进行傅立叶级数展开后,选取有限项进行合成。当选取的项数越多,在所合成的波形中出现的峰起越靠近原信号的不连续点。当选取的项数很大时,该峰起值趋于一个常数,大约等于总跳变值的9%。吉布斯现象如下图所示。

图1 吉布斯现象示意图

实际上,吉布斯现象最先并不是吉布斯发现的。科学家阿伯特·米切尔森(Albert Michelson)是第一个获得诺贝尔奖的美国人,他以米切尔森-莫利(Michelson-Morley)实验测量光速而闻名于世。但很多人不知道的是,他才是第一个发现吉布斯现象的人。

图2 米切尔森

图3 吉布斯

1898年,米切尔森(Albert Michelson)做了一个谐波分析仪。该仪器可以计算任何一个周期信号x(t)的傅里叶级数截断后的近似式,其中N 可以算到 80。米切尔森用了很多函数来测试它的仪器 ,结果都很好。然而当他测试方波信号时,他得到一个重要的,令他吃惊的结果!他于是根据这一结果而怀疑起他的仪器是否有不完善的地方。他将这一问题写一封信给当时著名的数学物理学家吉布斯 (Josiah Gibbs),吉布斯检查了这一结果,并于1899年在《自然》杂志上发表了他的看法。

  若用x(t)表示原始信号,xN(t)表示有限项傅立叶级数合成所得的信号,米切尔森所观察到的有趣的现象是方波的xN(t)在不连续点附近部分呈现起伏,这个起伏的峰值大小似乎不随 N 增大而下降!吉布斯证明:情况确实是这样,而且也应该是这样。随着N 增加,部分和的起伏就向不连续点压缩,但是对任何有限的 N 值,起伏的峰值大小保持不变 ,这就是吉布斯现象。

  这个现象的含义是:一个不连续信号 x(t) 的傅里叶级数的截断近似 xN(t),一般来说,在接近不连续点处将呈现高频起伏和超量,而且,若在实际情况下利用这样一个近似式的话,就应该选择足够大的 N ,以保证这些起伏拥有的总能量可以忽略。当然,在极限情况下,近似误差的能量是零,而且一个不连续的信号(如方波)的傅里叶级数表示是收敛的。

振铃效应(ringing artifacts)的更多相关文章

  1. Paper | Compression artifacts reduction by a deep convolutional network

    目录 1. 故事 2. 方法 3. 实验 这是继SRCNN(超分辨)之后,作者将CNN的战火又烧到了去压缩失真上.我们看看这篇文章有什么至今仍有启发的故事. 贡献: ARCNN. 讨论了low-lev ...

  2. 实现PC视频播放最强画质教程( Potplayer播放器+MADVR插件)【转】

    转自:http://www.hangge.com/blog/cache/detail_1461.html 一.MADVR介绍 MADVR 是一款超强的视频插件,其配合高清播放软件,可以做到目前 PC  ...

  3. Papers | 图像/视频增强 + 深度学习

    目录 I. ARCNN 1. Motivation 2. Contribution 3. Artifacts Reduction Convolutional Neural Networks (ARCN ...

  4. Paper | D3: Deep Dual-Domain Based Fast Restoration of JPEG-Compressed Images

    目录 摘要 读后感 故事 深度双域法(D3) 发表于2016年CVPR. 摘要 既利用了CNN,又考虑了JPEG压缩的特性,解决JPEG图像去失真问题. 针对于压缩特性,作者考虑了JPEG压缩方案的先 ...

  5. HEVC学习之一编码框架

    接触H265时间不是很长,看了一些东西,但是一直没有时间静下心来整理.H265的学习主要是参考万帅.杨付正的<新一代高效视频编码 H265/HEVC 原理.标准与实现>移书,这本书对H26 ...

  6. RS-232-C串口通讯协议解析(硬件接口协议)

    http://www.dz3w.com/info/interface/0075524.html http://wenku.baidu.com/view/02cc247c27284b73f24250e3 ...

  7. linux下编译eXosip、osip,以及UAC和UAS的例子

    从网站上看到了这样的一篇博文 :Windows下编译eXosip.osip,以及UAC和UAS的例子 (链接:http://www.cnblogs.com/dyllove98/archive/2013 ...

  8. Windows下编译eXosip、osip,以及UAC和UAS的例子

    今天开始了SIP开源库的学习,我选择了osip和eXosip,但是这两个库的编译使用有些麻烦,源码下来之后编译会出现很多问题,网上也没有找到完整的编译介绍,只能一步一步的找办法解决,最后终于编译成功! ...

  9. FFmpeg的HEVC解码器源代码简单分析:环路滤波(Loop Filter)

    ===================================================== HEVC源代码分析文章列表: [解码 -libavcodec HEVC 解码器] FFmpe ...

随机推荐

  1. java写的小脚本,用来受mDNS消息

    太ugly了,但是可以工作,抓了包下来,用前面DNS message structure做了下比较. 代码如下: import java.net.DatagramPacket; import java ...

  2. 用interrupt()中断Java线程

    最近在学习Java线程相关的东西,和大家分享一下,有错误之处欢迎大家指正. 假如我们有一个任务如下,交给一个Java线程来执行,如何才能保证调用interrupt()来中断它呢? class ATas ...

  3. hibernate 联合主键

      xml方式处理联合主键:   以有两个主键:id和name的student表为例. 先创建个主键类:   package com.bjsxt.hibernate; //黑色为必写项 public ...

  4. 用nodepad++生成导入数据的SQL

    在工作中经常要往数据库里导入数据,如果是在本地,可以用SQL SERVER自带的工具 直接往表里导入或者 用ssis 导入 线上的数据库由dba负责,作为开发不能直接操作,需要程序员来生成sql语句, ...

  5. 【转】火星坐标、百度坐标、WGS-84坐标相互转换及墨卡托投影坐标转经纬度JavaScript版

    原文地址:https://www.cnblogs.com/fwc1994/p/5884115.html 火星坐标 火星坐标是国家测绘局为了国家安全在原始坐标的基础上进行偏移得到的坐标,基本国内的电子地 ...

  6. object-c全局变量

    跟c++一定,在.m里Obj*obj=NULL,在.h里extern Obj*obj 即可.

  7. memcache概念浅谈及名称混乱之区分

    关于memcache这个现在应用广泛的组件,大大提高的网站的响应速度,也方便了程序开发缓存的应用.但是目前针对memcache,网上的资料 大同小异,尤其基于LAMP的网站居多,php/pcel又有两 ...

  8. Java并发编程(七):线程安全策略

    Java多线程——不可变对象 Java多线程——线程封闭 java线程不安全类与写法 Java线程安全同步容器 Java里的并发容器与安全共享策略总结

  9. CentOS6X安装PHP5.5

    CentOS6.x默认的php版本是php5.3,已经过时喽,现在最新的稳定版是5.5.38. 安装方法: 1.先下载2个源 rpm -Uvh https://dl.fedoraproject.org ...

  10. Java中的synthetic

    有synthetic标记的field和method是class内部使用的,正常的源代码里不会出现synthetic field.小颖编译工具用的就是jad.所有反编译工具都不能保证完全正确地反编译cl ...