Pandas窗口函数
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重。 其中包括总和,均值,中位数,方差,协方差,相关性等。
下来学习如何在DataFrame对象上应用上提及的每种方法。
.rolling()函数
这个函数可以应用于一系列数据。指定window=n
参数并在其上应用适当的统计函数。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2020', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.rolling(window=3).mean())
执行上面示例代码,得到以下结果 -
A B C D
2020-01-01 NaN NaN NaN NaN
2020-01-02 NaN NaN NaN NaN
2020-01-03 -0.306293 0.214001 -0.076004 -0.200793
2020-01-04 0.236632 -0.437033 0.046111 -0.252062
2020-01-05 0.761818 -0.181635 -0.546929 -0.738482
2020-01-06 1.306498 -0.411834 -0.680948 -0.070285
2020-01-07 0.956877 -0.749315 -0.503484 0.160620
2020-01-08 0.354319 -1.067165 -1.238036 1.051048
2020-01-09 0.262081 -0.898373 -1.059351 0.342291
2020-01-10 0.326801 -0.350519 -1.064437 0.749869
注 - 由于窗口大小为
3
(window
),前两个元素有空值,第三个元素的值将是n
,n-1
和n-2
元素的平均值。这样也可以应用上面提到的各种函数了。
.expanding()函数
这个函数可以应用于一系列数据。 指定min_periods = n
参数并在其上应用适当的统计函数。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2018', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.expanding(min_periods=3).mean())
执行上面示例代码得到以下结果 -
A B C D
2018-01-01 NaN NaN NaN NaN
2018-01-02 NaN NaN NaN NaN
2018-01-03 -0.425085 -0.124270 -0.324134 -0.234001
2018-01-04 -0.293824 -0.038188 -0.172855 0.447226
2018-01-05 -0.516146 -0.013441 -0.384935 0.379267
2018-01-06 -0.614905 0.290308 -0.594635 0.414396
2018-01-07 -0.606090 0.121265 -0.604148 0.246296
2018-01-08 -0.597291 0.075374 -0.425182 0.092831
2018-01-09 -0.380505 0.074956 -0.253081 0.146426
2018-01-10 -0.235030 0.018936 -0.259566 0.315200
.ewm()函数
ewm()
可应用于系列数据。指定com
,span
,halflife
参数,并在其上应用适当的统计函数。它以指数形式分配权重。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2019', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.ewm(com=0.5).mean())
执行上面示例函数,得到以下结果 -
A B C D
2019-01-01 1.047165 0.777385 -1.286948 -0.080564
2019-01-02 0.484093 -0.630998 -0.975172 -0.117832
2019-01-03 0.056189 0.830492 0.116325 1.005547
2019-01-04 -0.363824 1.222173 0.497901 -0.235209
2019-01-05 -0.260685 1.066029 0.391480 1.196190
2019-01-06 0.389649 1.458152 -0.231936 -0.481003
2019-01-07 1.071035 -0.016003 0.387420 -0.170811
2019-01-08 -0.573686 1.052081 1.218439 0.829366
2019-01-09 0.222927 0.556430 0.811838 -0.562096
2019-01-10 0.224624 -1.225446 0.204961 -0.800444
窗口函数主要用于通过平滑曲线来以图形方式查找数据内的趋势。如果日常数据中有很多变化,并且有很多数据点可用,那么采样和绘图就是一种方法,应用窗口计算并在结果上绘制图形是另一种方法。 通过这些方法,可以平滑曲线或趋势。
Pandas窗口函数的更多相关文章
- Pandas教程目录
Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...
- Python人工智能学习笔记
Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...
- pandas处理时间序列(4): 移动窗口函数
六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...
- Pandas | 15 窗口函数
为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重. 其中包括总和,均值,中位数,方差,协方差,相关性等.本章讨论的是在DataFrame对象上应用这些方法. .rol ...
- Pandas系列(七)-计算工具介绍
内容目录 1. 统计函数 2. 窗口函数 3. 加深加强 数据准备 # 导入相关库 import numpy as np import pandas as pd #Pandas 中包含了非常丰富的计算 ...
- numpy pandas matplotlib
import numpy as np import pandas as pd import matplotlib.pyplot as plt ---------------numpy--------- ...
- Pandas v0.23.4手册汉化
Pandas手册汉化 此页面概述了所有公共pandas对象,函数和方法.pandas.*命名空间中公开的所有类和函数都是公共的. 一些子包是公共的,其中包括pandas.errors, pandas. ...
- pandas时间序列滑窗
时间序列数据统计-滑动窗口 窗口函数 import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(1000), ...
- Pandas 计算工具介绍
# 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...
随机推荐
- 170206、sping注解@autowired和@resource的区别
新年第一天上班,新的一年,我们17加油!!! @Resource的作用相当于@Autowired,只不过@Autowired按byType自动注入,而@Resource默认按 byName自动注入罢了 ...
- 如何修改Myeclipse的JSP模板
先找到MyEclipse的安装目录, 再找到myeclipse/eclipse/plugins/com.genuitec.eclipse.wizards_5.1.0/templates/jsp (co ...
- 巨蟒python全栈开发数据库攻略1:基础攻略
1.什么是数据库? 2.数据库分类 3.数据库简单介绍 4.安装数据库 5.修改root密码 6.修改字符集 7.sql介绍 8.简单sql操作
- Compilation failed: internal java compiler error
在Idea中编译时出现这个错误:Error:java: Compilation failed: internal java compiler error. Information:Using java ...
- python可变参数*args, **kwargs
python可变参数*args, **kwargs def foo(* args, ** kwargs): print ' args = ', args print ' kwargs = ', k ...
- Android “swipe” vs “fling”
onFling will get executed when a user makes a "fling" motion, and said motion has a veloci ...
- Elasticsearch中文搜索环境搭建
Elasticsearch是一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎,功能强大,最近刚好要研究搜索这一块,简要记录备日后查阅 安装Java JDK,由于Lucene是用J ...
- 重置Linux普通账号和root账号密码
今天想在Linux测试下HTTPie, 突然发现虚拟机里面的Linux, root账号和普通账号密码都忘记了. 百度了半天发现答案都不对, 最后用Google搜到了答案. 本人系统环境: VMware ...
- 2 TensorFlow入门笔记之建造神经网络并将结果可视化
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ---------------------------------- ...
- python16_day06【类、RE模块、subprocess模块、xml模块、shelve模块】
一.shelve模块 import shelve # 基于pickle模块, d = shelve.open('shelve_test') class Test(object): def __init ...