为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重。 其中包括总和,均值,中位数,方差,协方差,相关性等。

下来学习如何在DataFrame对象上应用上提及的每种方法。

.rolling()函数

这个函数可以应用于一系列数据。指定window=n参数并在其上应用适当的统计函数。

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2020', periods=10),
columns = ['A', 'B', 'C', 'D']) print (df.rolling(window=3).mean())
Python

执行上面示例代码,得到以下结果 -

                   A         B         C         D
2020-01-01 NaN NaN NaN NaN
2020-01-02 NaN NaN NaN NaN
2020-01-03 -0.306293 0.214001 -0.076004 -0.200793
2020-01-04 0.236632 -0.437033 0.046111 -0.252062
2020-01-05 0.761818 -0.181635 -0.546929 -0.738482
2020-01-06 1.306498 -0.411834 -0.680948 -0.070285
2020-01-07 0.956877 -0.749315 -0.503484 0.160620
2020-01-08 0.354319 -1.067165 -1.238036 1.051048
2020-01-09 0.262081 -0.898373 -1.059351 0.342291
2020-01-10 0.326801 -0.350519 -1.064437 0.749869
Shell

注 - 由于窗口大小为3(window),前两个元素有空值,第三个元素的值将是nn-1n-2元素的平均值。这样也可以应用上面提到的各种函数了。

.expanding()函数

这个函数可以应用于一系列数据。 指定min_periods = n参数并在其上应用适当的统计函数。

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2018', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.expanding(min_periods=3).mean())
Python

执行上面示例代码得到以下结果 -

                   A         B         C         D
2018-01-01 NaN NaN NaN NaN
2018-01-02 NaN NaN NaN NaN
2018-01-03 -0.425085 -0.124270 -0.324134 -0.234001
2018-01-04 -0.293824 -0.038188 -0.172855 0.447226
2018-01-05 -0.516146 -0.013441 -0.384935 0.379267
2018-01-06 -0.614905 0.290308 -0.594635 0.414396
2018-01-07 -0.606090 0.121265 -0.604148 0.246296
2018-01-08 -0.597291 0.075374 -0.425182 0.092831
2018-01-09 -0.380505 0.074956 -0.253081 0.146426
2018-01-10 -0.235030 0.018936 -0.259566 0.315200
Shell

.ewm()函数

ewm()可应用于系列数据。指定comspanhalflife参数,并在其上应用适当的统计函数。它以指数形式分配权重。

import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(10, 4),
index = pd.date_range('1/1/2019', periods=10),
columns = ['A', 'B', 'C', 'D'])
print (df.ewm(com=0.5).mean())
Python

执行上面示例函数,得到以下结果 -

                   A         B         C         D
2019-01-01 1.047165 0.777385 -1.286948 -0.080564
2019-01-02 0.484093 -0.630998 -0.975172 -0.117832
2019-01-03 0.056189 0.830492 0.116325 1.005547
2019-01-04 -0.363824 1.222173 0.497901 -0.235209
2019-01-05 -0.260685 1.066029 0.391480 1.196190
2019-01-06 0.389649 1.458152 -0.231936 -0.481003
2019-01-07 1.071035 -0.016003 0.387420 -0.170811
2019-01-08 -0.573686 1.052081 1.218439 0.829366
2019-01-09 0.222927 0.556430 0.811838 -0.562096
2019-01-10 0.224624 -1.225446 0.204961 -0.800444
Shell

窗口函数主要用于通过平滑曲线来以图形方式查找数据内的趋势。如果日常数据中有很多变化,并且有很多数据点可用,那么采样和绘图就是一种方法,应用窗口计算并在结果上绘制图形是另一种方法。 通过这些方法,可以平滑曲线或趋势。

Pandas窗口函数的更多相关文章

  1. Pandas教程目录

    Pandas数据结构 Pandas系列 Pandas数据帧(DataFrame) Pandas面板(Panel) Pandas基本功能 Pandas描述性统计 Pandas函数应用 Pandas重建索 ...

  2. Python人工智能学习笔记

    Python教程 Python 教程 Python 简介 Python 环境搭建 Python 中文编码 Python 基础语法 Python 变量类型 Python 运算符 Python 条件语句 ...

  3. pandas处理时间序列(4): 移动窗口函数

    六.移动窗口函数 移动窗口和指数加权函数类别如↓: rolling_mean 移动窗口的均值 pandas.rolling_mean(arg, window, min_periods=None, fr ...

  4. Pandas | 15 窗口函数

    为了处理数字数据,Pandas提供了几个变体,如滚动,展开和指数移动窗口统计的权重. 其中包括总和,均值,中位数,方差,协方差,相关性等.本章讨论的是在DataFrame对象上应用这些方法. .rol ...

  5. Pandas系列(七)-计算工具介绍

    内容目录 1. 统计函数 2. 窗口函数 3. 加深加强 数据准备 # 导入相关库 import numpy as np import pandas as pd #Pandas 中包含了非常丰富的计算 ...

  6. numpy pandas matplotlib

    import numpy as np import pandas as pd import matplotlib.pyplot as plt ---------------numpy--------- ...

  7. Pandas v0.23.4手册汉化

    Pandas手册汉化 此页面概述了所有公共pandas对象,函数和方法.pandas.*命名空间中公开的所有类和函数都是公共的. 一些子包是公共的,其中包括pandas.errors, pandas. ...

  8. pandas时间序列滑窗

    时间序列数据统计-滑动窗口 窗口函数 import pandas as pd import numpy as np ser_obj = pd.Series(np.random.randn(1000), ...

  9. Pandas 计算工具介绍

    # 导入相关库 import numpy as np import pandas as pd 统计函数 最常见的计算工具莫过于一些统计函数了.首先构建一个包含了用户年龄与收入的 DataFrame i ...

随机推荐

  1. 史上最全Vim快捷键键位图 -- 入门到进阶

    文章欢迎转载,但转载时请保留本段文字,并置于文章的顶部 作者:卢钧轶(cenalulu) 本文原文地址:http://cenalulu.github.io/linux/all-vim-cheatshe ...

  2. 第13章—数据库连接池(Druid)

    spring boot 系列学习记录:http://www.cnblogs.com/jinxiaohang/p/8111057.html 码云源码地址:https://gitee.com/jinxia ...

  3. unix_timestamp 和 from_unixtime 时间戳函数 区别

    1.unix_timestamp 将时间转化为时间戳.(date 类型数据转换成 timestamp 形式整数) 没传时间参数则取当前时间的时间戳 mysql> select unix_time ...

  4. tpot从elastic search拉攻击数据之三 用于拉取的java程序

    package download; import org.json.JSONArray; import java.io.*; import java.net.URL; import java.net. ...

  5. make Makefile 与 cmake CMakeLists.txt

    make Makefile 与 cmake CMakeLists.txt 大家都知道,写程序大体步骤为: 1.用编辑器编写源代码,如.c文件. 2.用编译器编译代码生成目标文件,如.o. 3.用链接器 ...

  6. Python 模块之 time & datetime

    Python 中提供了对时间日期的多种多样的处理方式,主要是在有 time 和 datetime 两个模块. time 在 Python 文档里,time 是归类在 Generic Operating ...

  7. mysql 如何找出两张表之间的关系

    分析步骤: #1.先站在左表的角度去找 是否左表的多条记录可以对应右表的一条记录,如果是,则证明左表的一个字段foreign key 右表一个字段(通常是id) #2.再站在右表的角度去找 是否右表的 ...

  8. git常用命令总结(转载)

    Workspace:工作区 Index / Stage:暂存区 Repository:仓库区(或本地仓库) Remote:远程仓库 一.新建代码库 # 在当前目录新建一个Git代码库 $ git in ...

  9. ngs中reads mapping-pku的生信课程

    4.NGS中的reads mapping 顾名思义,就是将测序的得到的DNA定位在基因组上. 因为二代测序的得到的序列是较短的,reads mapping很好地解决了这个问题. 本质上reads ma ...

  10. go——工程结构

    Go是一门推崇软件工程理念的编程语言,它为开发周期的每个环节都提供了完备的工具和支持. Go语言高度强调代码和项目的规范和统一,这几种体现在工程结构或者说代码体制的细节之处. 1.工作区 一般情况下, ...