Table of Contents

前言

matplotlib, 官方提供的饼图Demo,功能比较比较简单,在实际应用过程中,往往会有许多个性化的绘制需求,在这里跟大家一起了解下饼图(pie chart)的一些特色的功能的实现。

from matplotlib import font_manager as fm
import matplotlib as mpl
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
% matplotlib inline
plt.style.use('ggplot')

1. 官方Demo

import matplotlib.pyplot as plt

# Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs') fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.savefig('Demo_official.jpg')
plt.show()

2. 将实际数据应用于官方Demo

# 原始数据
shapes = ['Cross', 'Cone', 'Egg', 'Teardrop', 'Chevron', 'Diamond', 'Cylinder',
'Rectangle', 'Flash', 'Cigar', 'Changing', 'Formation', 'Oval', 'Disk',
'Sphere', 'Fireball', 'Triangle', 'Circle', 'Light']
values = [ 287, 383, 842, 866, 1187, 1405, 1495, 1620, 1717,
2313, 2378, 3070, 4332, 5841, 6482, 7785, 9358, 9818, 20254] s = pd.Series(values, index=shapes)
s
from matplotlib import font_manager as fm
import matplotlib as mpl # Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = s.index
sizes = s.values
explode = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # only "explode" the 1st slice fig1, ax1 = plt.subplots()
patches, texts, autotexts = ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.0f%%',
shadow=False, startangle=170)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.savefig('Demo_project.jpg')
plt.show()

上图的一些问题:

  1. 颜色比较生硬
  2. 部分文字拥挤在一起,绘图显示不齐整

3. 一些改善措施

  • 重新设置字体大小
  • 设置自选颜色
  • 设置图例
  • 将某些类别突出显示

3.1 重新设置字体大小

from matplotlib import font_manager as fm
import matplotlib as mpl labels = s.index
sizes = s.values
explode = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # only "explode" the 1st slice fig1, ax1 = plt.subplots() patches, texts, autotexts = ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.0f%%',
shadow=False, startangle=170)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. # 重新设置字体大小
proptease = fm.FontProperties()
proptease.set_size('xx-small')
# font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12'
plt.setp(autotexts, fontproperties=proptease)
plt.setp(texts, fontproperties=proptease) plt.savefig('Demo_project_set_font.jpg')
plt.show()

3.2 设置显示颜色,Method 1:

from matplotlib import font_manager as fm
import matplotlib as mpl # Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = s.index
sizes = s.values
explode = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # only "explode" the 1st slice fig1, ax1 = plt.subplots(figsize=(6,6)) # 设置绘图区域大小 a = np.random.rand(1,19)
color_vals = list(a[0])
my_norm = mpl.colors.Normalize(-1, 1) # 将颜色数据的范围设置为 [0, 1]
my_cmap = mpl.cm.get_cmap('rainbow', len(color_vals)) # 可选择合适的colormap,如:'rainbow' patches, texts, autotexts = ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.0f%%',
shadow=False, startangle=170, colors=my_cmap(my_norm(color_vals))) ax1.axis('equal') # 重新设置字体大小
proptease = fm.FontProperties()
proptease.set_size('xx-small')
# font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12'
plt.setp(autotexts, fontproperties=proptease)
plt.setp(texts, fontproperties=proptease) plt.savefig('Demo_project_set_color_1.jpg')
plt.show()

上面这种方法设置颜色时,但类别比较多时,部分颜色的填充会重复。

有时候,我们可能想设置成连续的颜色,可以有另外一种方法来实现。

3.3 设置显示颜色, Method 2:

from matplotlib import font_manager as fm
from matplotlib import cm labels = s.index
sizes = s.values
# explode = (0.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # only "explode" the 1st slice fig, ax = plt.subplots(figsize=(6,6)) # 设置绘图区域大小 colors = cm.rainbow(np.arange(len(sizes))/len(sizes)) # colormaps: Paired, autumn, rainbow, gray,spring,Darks
patches, texts, autotexts = ax.pie(sizes, labels=labels, autopct='%1.0f%%',
shadow=False, startangle=170, colors=colors) ax.axis('equal')
ax.set_title('Shapes -------------------', loc='left') # 重新设置字体大小
proptease = fm.FontProperties()
proptease.set_size('xx-small')
# font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12'
plt.setp(autotexts, fontproperties=proptease)
plt.setp(texts, fontproperties=proptease) plt.savefig('Demo_project_set_color_2.jpg')
plt.show()

从上图可以看出,颜色显示是连续的,实现了我们想要的效果

3.4 设置图例(legend)

from matplotlib import font_manager as fm
from matplotlib import cm labels = s.index
sizes = s.values
# explode = (0.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # only "explode" the 1st slice fig, ax = plt.subplots(figsize=(6,6)) # 设置绘图区域大小 colors = cm.rainbow(np.arange(len(sizes))/len(sizes)) # colormaps: Paired, autumn, rainbow, gray,spring,Darks
patches, texts, autotexts = ax.pie(sizes, labels=labels, autopct='%1.0f%%',
shadow=False, startangle=170, colors=colors) ax.axis('equal') # 重新设置字体大小
proptease = fm.FontProperties()
proptease.set_size('xx-small')
# font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12'
plt.setp(autotexts, fontproperties=proptease)
plt.setp(texts, fontproperties=proptease) ax.legend(labels, loc=2) plt.savefig('Demo_project_set_legend_error.jpg')
plt.show()

从上面可看出,当类别较多时,图例(legend)的位置摆放显示有重叠,显示有些问题,需要进行调整。

3.5 重新设置图例(legend)

from matplotlib import font_manager as fm
from matplotlib import cm labels = s.index
sizes = s.values
# explode = (0.2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) # only "explode" the 1st slice fig, axes = plt.subplots(figsize=(10,5),ncols=2) # 设置绘图区域大小
ax1, ax2 = axes.ravel() colors = cm.rainbow(np.arange(len(sizes))/len(sizes)) # colormaps: Paired, autumn, rainbow, gray,spring,Darks
patches, texts, autotexts = ax1.pie(sizes, labels=labels, autopct='%1.0f%%',
shadow=False, startangle=170, colors=colors) ax1.axis('equal') # 重新设置字体大小
proptease = fm.FontProperties()
proptease.set_size('xx-small')
# font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12'
plt.setp(autotexts, fontproperties=proptease)
plt.setp(texts, fontproperties=proptease) ax1.set_title('Shapes', loc='center') # ax2 只显示图例(legend)
ax2.axis('off')
ax2.legend(patches, labels, loc='center left') plt.tight_layout()
plt.savefig('Demo_project_set_legend_good.jpg')
plt.show()

3.6 将某些类别突出显示

  • 将某些类别突出显示
  • 控制label的显示位置
  • 控制百分比的显示位置
  • 控制突出位置的大小
from matplotlib import font_manager as fm
from matplotlib import cm labels = s.index
sizes = s.values
explode = (0.1,0,0,0,0,0,0,0,0,0,0,0,0,0.2,0,0,0,0.1,0) # "explode" , show the selected slice fig, axes = plt.subplots(figsize=(8,5),ncols=2) # 设置绘图区域大小
ax1, ax2 = axes.ravel() colors = cm.rainbow(np.arange(len(sizes))/len(sizes)) # colormaps: Paired, autumn, rainbow, gray,spring,Darks
patches, texts, autotexts = ax1.pie(sizes, labels=labels, autopct='%1.0f%%',explode=explode,
shadow=False, startangle=170, colors=colors, labeldistance=1.2,pctdistance=1.03, radius=0.4)
# labeldistance: 控制labels显示的位置
# pctdistance: 控制百分比显示的位置
# radius: 控制切片突出的距离 ax1.axis('equal') # 重新设置字体大小
proptease = fm.FontProperties()
proptease.set_size('xx-small')
# font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12'
plt.setp(autotexts, fontproperties=proptease)
plt.setp(texts, fontproperties=proptease) ax1.set_title('Shapes', loc='center') # ax2 只显示图例(legend)
ax2.axis('off')
ax2.legend(patches, labels, loc='center left') plt.tight_layout()
# plt.savefig("pie_shape_ufo.png", bbox_inches='tight')
plt.savefig('Demo_project_final.jpg')
plt.show()

更多精彩内容请关注公众号:

“Python数据之道”

关于matplotlib,你要的饼图在这里的更多相关文章

  1. 你都用python来做什么?

    首页发现话题   提问     你都用 Python 来做什么? 关注问题写回答     编程语言 Python 编程 Python 入门 Python 开发 你都用 Python 来做什么? 发现很 ...

  2. 我用了半年的时间,把python学到了能出书的程度

    Python难学吗?不难,我边做项目边学,过了半年就通过了出版社编辑的面试,接到了一本Python选题,并成功出版. 有同学会说,你有编程基础外带项目实践机会,所以学得快.这话不假,我之前的基础确实加 ...

  3. matplotlib 柱状图、饼图;直方图、盒图

    #-*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl m ...

  4. matplotlib入门--1(条形图, 直方图, 盒须图, 饼图)

    作图首先要进行数据的输入,matplotlib包只提供作图相关功能,本身并没有数据读入.输出函数,针对各种试验或统计文本数据输入可以使用numpy提供的数据输入函数. # -*- coding: gb ...

  5. 使用matplotlib画饼图

    import matplotlib.pyplot as pltx = [4, 9, 21, 55, 30, 18]labels = ['math', 'history', 'chemistry', ' ...

  6. Matplotlib学习---用matplotlib画饼图/面包圈图(pie chart, donut chart)

    我在网上随便找了一组数据,用它来学习画图.大家可以直接把下面的数据复制到excel里,然后用pandas的read_excel命令读取.或者直接在脚本里创建该数据. 饼图: ax.pie(x,labe ...

  7. 06. Matplotlib 2 |折线图| 柱状图| 堆叠图| 面积图| 填图| 饼图| 直方图| 散点图| 极坐标| 图箱型图

    1.基本图表绘制 plt.plot() 图表类别:线形图.柱状图.密度图,以横纵坐标两个维度为主同时可延展出多种其他图表样式 plt.plot(kind='line', ax=None, figsiz ...

  8. python 使用 matplotlib.pyplot来画柱状图和饼图

    导入包 import matplotlib.pyplot as plt 柱状图 最简柱状图 # 显示高度 def autolabel(rects): for rect in rects: height ...

  9. matplotlib基本使用(矩形图、饼图、热力图、3D图)

    使用matplotlib画简单的图形: #-*- coding:utf-8 -*- from numpy.random import randn import matplotlib.pyplot as ...

  10. matplotlib常见绘图基础代码小结:折线图、散点图、条形图、直方图、饼图

    一.折线图 二.散点图 三.条形图 四.直方图 五.饼图 一.折线图折线图用于显示随时间或有序类别的变化趋势 from matplotlib import pyplot as plt x = rang ...

随机推荐

  1. LightOJ 1058 - Parallelogram Counting 几何思维

    http://www.lightoj.com/volume_showproblem.php?problem=1058 题意:给你顶点,问能够成多少个平行四边形. 思路:开始想使用长度来扫描有多少根,但 ...

  2. [洛谷P4768] [NOI2018]归程 (kruskal重构树模板讲解)

    洛谷题目链接:[NOI2018]归程 因为题面复制过来有点炸格式,所以要看题目就点一下链接吧\(qwq\) 题意: 在一张无向图上,每一条边都有一个长度和海拔高度,小\(Y\)的家在\(1\)节点,并 ...

  3. java -classpath or -cp 的设置和解释

    classpath is a parameter—set either on the command-line, or through an environment variable—that tel ...

  4. bzoj 1594: [Usaco2008 Jan]猜数游戏——二分+线段树

    Description 为了提高自己低得可怜的智商,奶牛们设计了一个新的猜数游戏,来锻炼她们的逻辑推理能力. 游戏开始前,一头指定的奶牛会在牛棚后面摆N(1 <= N<= 1,000,00 ...

  5. bzoj 2276: [Poi2011]Temperature——单调队列

    Description 某国进行了连续n天的温度测量,测量存在误差,测量结果是第i天温度在[l_i,r_i]范围内. 求最长的连续的一段,满足该段内可能温度不降 第一行n 下面n行,每行l_i,r_i ...

  6. js 重置表单

    //方法一document.getElementById("myform").reset(); //方法二 ].reset(); //方法三 使用input按钮 <input ...

  7. arch中yaourt的安装和使用

    yaourt-Yet AnOther User Repository Tool Yaourt是archlinux方便使用的关键部件之一,但没有被整合到系统安装中的工具.建议在装完系统重启之后,更新完p ...

  8. python中BeautifulSoup模块

    BeautifulSoup模块是干嘛的? 答:通过html标签去快速匹配标签中的内容.效率相对比正则会好的多.效率跟xpath模块应该差不多. 一:解析器: BeautifulSoup(html,&q ...

  9. webpack版本1与版本2的若干写法区别

    2.x的环境遇到类似this._init is not a function的报错. 版本1.x的写法: resolve: { extensions: ['', '.js', '.vue'] }, m ...

  10. 安全测试===sqlmap(贰)转载

    十二.列举数据 这些参数用于列举出数据库管理系统信息.数据结构和数据内容. 1.一键列举全部数据 参数:--all 使用这一个参数就能列举所有可访问的数据.但不推荐使用,因为这会发送大量请求,把有用和 ...