# -*- coding: utf-8 -*-

import tensorflow as tf
w1=tf.Variable(tf.random_normal([2,6],stddev=1))
w2=tf.Variable(tf.random_normal([6,1],stddev=1))

x=tf.placeholder(dtype=tf.float32,shape=(4,2),name="input")
h=tf.matmul(x,w1)
y=tf.matmul(h,w2)

init_op=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init_op)

print sess.run(y,feed_dict={x:[[5.2,2.9],[3.9,1.1],[3.9,5.2],[6.1,9.2]]})

数据需要通过字典输入

  1. # Launch the graph in a session.
    with tf.Session() as sess:
        # Run the variable initializer.
        sess.run(w.initializer)
        # ...you now can run ops that use the value of 'w'...

  1. #global_variables_initializer()to add an Op to the graph that initializes all the variables. You then run that Op after launching the graph.Add an Op to initialize global variables.
    init_op = tf.global_variables_initializer()

    # Launch the graph in a session.
    with tf.Session() as sess:
        # Run the Op that initializes global variables.
        sess.run(init_op)
        # ...you can now run any Op that uses variable values...

tf.Variable

  1. _init__(
        initial_value=None,
        trainable=True,
        collections=None,
        validate_shape=True,
        caching_device=None,
        name=None,
        variable_def=None,
        dtype=None,
        expected_shape=None,
        import_scope=None
    )

Creates a new variable with value initial_value.

The new variable is added to the graph collections listed in collections, which defaults to [GraphKeys.GLOBAL_VARIABLES].

If trainable is True the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES.

This constructor creates both a variable Op and an assign Op to set the variable to its initial value.

Args:

  • initial_value: A Tensor, or Python object convertible to a Tensor, which is the initial value for the Variable. The initial value must have a shape specified unless validate_shape is set to False. Can also be a callable with no argument that returns the initial value when called. In that case, dtype must be specified. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.)
  • trainable: If True, the default, also adds the variable to the graph collection GraphKeys.TRAINABLE_VARIABLES. This collection is used as the default list of variables to use by the Optimizer classes.
  • collections: List of graph collections keys. The new variable is added to these collections. Defaults to [GraphKeys.GLOBAL_VARIABLES].
  • validate_shape: If False, allows the variable to be initialized with a value of unknown shape. If True, the default, the shape of initial_value must be known.
  • caching_device: Optional device string describing where the Variable should be cached for reading. Defaults to the Variable's device. If not None, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying through Switch and other conditional statements.
  • name: Optional name for the variable. Defaults to 'Variable' and gets uniquified automatically.
  • variable_defVariableDef protocol buffer. If not None, recreates the Variable object with its contents, referencing the variable's nodes in the graph, which must already exist. The graph is not changed.variable_def and the other arguments are mutually exclusive.
  • dtype: If set, initial_value will be converted to the given type. If None, either the datatype will be kept (if initial_value is a Tensor), or convert_to_tensor will decide.
  • expected_shape: A TensorShape. If set, initial_value is expected to have this shape.
  • import_scope: Optional string. Name scope to add to the Variable. Only used when initializing from protocol buffer.

Raises:

  • ValueError: If both variable_def and initial_value are specified.
  • ValueError: If the initial value is not specified, or does not have a shape and validate_shape is True.

tf随笔-5的更多相关文章

  1. TF随笔-13

    import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...

  2. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...

  3. TF随笔-10

    #!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...

  4. TF随笔-9

    计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...

  5. TF随笔-8

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...

  6. TF随笔-7

    求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...

  7. tf随笔-6

    import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...

  8. TF随笔-4

    >>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...

  9. TF随笔-3

    >>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...

随机推荐

  1. Django框架之ORM(数据库)操作

    一.ORM介绍 映射关系: 表名 -------------------->类名 字段-------------------->属性 表记录----------------->类实例 ...

  2. EasyUI:datagrid数据汇总

    EasyUI:datagrid数据汇总 js代码: var total=0;//全局变量 $(function(){ $('#tablebudgetdata').datagrid({ title:' ...

  3. React-Navigation与Redux整合详解

    本文转自:文章地址:http://blog.csdn.net/u013718120/article/details/72357698 继react-navigation发布已经过去半年的时间,想必Re ...

  4. MongoDB快速入门(十二) -- 索引

    MongoDB 索引 索引支持的解析度的查询效率.如果没有索引,MongoDB必须扫描每一个文档的集合,要选择那些文档相匹配的查询语句.这种扫描的效率非常低,会要求 mongod 做大数据量的处理. ...

  5. some words

    For we meet in an hour of change and challenge,              in a dacade of hope and fear,   in an a ...

  6. MySql判断汉字、日期、数字的具体函数

    几个平常用的mysql函数,MySql判断汉字.日期.数字的具体函数分享给大家,具体内容如下 1.判断字符串是否为汉字 返回值:1-汉字 0-非汉字 ? 1 2 3 4 5 6 7 8 9 10 11 ...

  7. SpringBoot配置文件 application.properties详解

    SpringBoot配置文件 application.properties详解   本文转载:https://www.cnblogs.com/louby/p/8565027.html 阅读过程中若发现 ...

  8. Java 获取路径的几种方法 - 转载

    1.获取当前类所在的“项目名路径” String rootPath = System.getProperty("user.dir"); 2.获取编译文件“jar包路径”(反射) S ...

  9. 不常用的gcd公式

    gcd(a^m-b^m,a^n-b^n)=a^(gcd(m,n))-b^(gcd(m,n))

  10. TCP中间件_个人方案

    按照功能分类,不管是直接的 insert/delete/update/select语句 还是 调用存储过程,基本的功能 就是 增删改查.又分为两大类: (1).查询(会返回结果集的),(2).非查询( ...