tf随笔-5
# -*- coding: utf-8 -*-
import tensorflow as tf
w1=tf.Variable(tf.random_normal([2,6],stddev=1))
w2=tf.Variable(tf.random_normal([6,1],stddev=1))
x=tf.placeholder(dtype=tf.float32,shape=(4,2),name="input")
h=tf.matmul(x,w1)
y=tf.matmul(h,w2)
init_op=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init_op)
print sess.run(y,feed_dict={x:[[5.2,2.9],[3.9,1.1],[3.9,5.2],[6.1,9.2]]})
数据需要通过字典输入
# Launch the graph in a session.
with tf.Session() as sess:
# Run the variable initializer.
sess.run(w.initializer)
# ...you now can run ops that use the value of 'w'...
#global_variables_initializer()
to add an Op to the graph that initializes all the variables. You then run that Op after launching the graph.Add an Op to initialize global variables.
init_op = tf.global_variables_initializer()
# Launch the graph in a session.
with tf.Session() as sess:
# Run the Op that initializes global variables.
sess.run(init_op)
# ...you can now run any Op that uses variable values...
tf.Variable
_init__(
initial_value=None,
trainable=True,
collections=None,
validate_shape=True,
caching_device=None,
name=None,
variable_def=None,
dtype=None,
expected_shape=None,
import_scope=None
)
Creates a new variable with value initial_value
.
The new variable is added to the graph collections listed in collections
, which defaults to [GraphKeys.GLOBAL_VARIABLES]
.
If trainable
is True
the variable is also added to the graph collection GraphKeys.TRAINABLE_VARIABLES
.
This constructor creates both a variable
Op and an assign
Op to set the variable to its initial value.
Args:
initial_value
: ATensor
, or Python object convertible to aTensor
, which is the initial value for the Variable. The initial value must have a shape specified unlessvalidate_shape
is set to False. Can also be a callable with no argument that returns the initial value when called. In that case,dtype
must be specified. (Note that initializer functions from init_ops.py must first be bound to a shape before being used here.)trainable
: IfTrue
, the default, also adds the variable to the graph collectionGraphKeys.TRAINABLE_VARIABLES
. This collection is used as the default list of variables to use by theOptimizer
classes.collections
: List of graph collections keys. The new variable is added to these collections. Defaults to[GraphKeys.GLOBAL_VARIABLES]
.validate_shape
: IfFalse
, allows the variable to be initialized with a value of unknown shape. IfTrue
, the default, the shape ofinitial_value
must be known.caching_device
: Optional device string describing where the Variable should be cached for reading. Defaults to the Variable's device. If notNone
, caches on another device. Typical use is to cache on the device where the Ops using the Variable reside, to deduplicate copying throughSwitch
and other conditional statements.name
: Optional name for the variable. Defaults to'Variable'
and gets uniquified automatically.variable_def
:VariableDef
protocol buffer. If notNone
, recreates the Variable object with its contents, referencing the variable's nodes in the graph, which must already exist. The graph is not changed.variable_def
and the other arguments are mutually exclusive.dtype
: If set, initial_value will be converted to the given type. IfNone
, either the datatype will be kept (ifinitial_value
is a Tensor), orconvert_to_tensor
will decide.expected_shape
: A TensorShape. If set, initial_value is expected to have this shape.import_scope
: Optionalstring
. Name scope to add to theVariable.
Only used when initializing from protocol buffer.
Raises:
ValueError
: If bothvariable_def
and initial_value are specified.ValueError
: If the initial value is not specified, or does not have a shape andvalidate_shape
isTrue
.
tf随笔-5的更多相关文章
- TF随笔-13
import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...
- TF随笔-11
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...
- TF随笔-10
#!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...
- TF随笔-9
计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...
- TF随笔-8
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...
- TF随笔-7
求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...
- tf随笔-6
import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...
- TF随笔-4
>>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...
- TF随笔-3
>>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...
随机推荐
- go——标准命令
Go本身包含大量用户处理Go程序的命令和工具. 1.子命令 go命令的子命令:build:用于编译指定的代码包或Go语言源码文件. 命令源码文件会被编译成可执行文件,并存放到命令执行的目录或指定目录下 ...
- sql创建表、改变表、关联查询语句
- js获取iframe和父级之间元素,方法、属,获取iframe的高度自适应iframe高度
摘自:http://blog.csdn.net/kongjiea/article/details/38870399 1.在父页面 获取iframe子页面的元素 (在同域的情况下 且在http://下测 ...
- 【Flask】WTForms基本使用
# WTForms笔记:这个库一般有两个作用.第一个就是做表单验证,把用户提交上来的数据进行验证是否合法.第二个就是做模版渲染. ### 做表单验证:1. 自定义一个表单类,继承自wtforms.Fo ...
- Docker与自动化测试及其测试实践
Docker 与自动化测试 对于重复枯燥的手动测试任务,可以考虑将其进行自动化改造.自动化的成本在于自动化程序的编写和维护,而收益在于节省了手动执行用例的时间.简而言之,如果收益大于成本,测试任务就有 ...
- jQuery/CSS3 3D焦点图动画
在线演示 本地下载
- ssi include返回404页面
项目中index.html中包含<!--#include virtual="/commonfrag/djdzkan/recomm_www_info.inc" --> ...
- VRChat简易教程2-创建一个最基本的世界(world)
一.准备工作 1 先确保你安装了unity并导入了sdk 教程:https://www.cnblogs.com/cation/p/10311702.html 2 按之前的教程新建一个project并导 ...
- python+senium+chrome的简单爬虫脚本
简述: 开始接触python写web自动化的脚本主要源于在公司订阅会议室,主要是使用python+selenium+chromedriver驱动chrome浏览器来完成的,其中部分python代码可以 ...
- Prims算法 - 最小生成树
2017-07-26 14:35:49 Prims算法,是一种基于“贪心”的求最小树的算法 ,以每次加入一个邻接边来建立最小树,直到找到N-1个边为止. 规则:以开始时生成树的集合为起始的顶点,然后 ...