avl树的操作证明
以下用大O表示节点,ABC表示三个集合。
仅分析左子树的情况,因为对称,右子树的情况一样。
插入节点前
O
/ \
O A
/ \
B C
插入节点后:
O
/ \
O A
/ \
B C
/
O
此时造成了最高节点的不平衡,说明了B+2 - A = 2;另外可以知道B = C,考虑B<C,那么在插入节点前最高点就已经不平衡了,考虑B > C,那么最高的左子树就已经不平衡了,而不应该考虑最高点。所以此时可以知道A = B = C。
左子树单旋转之后:
O
/ \
B O
/ / \
O C A
对于最高点来说,左子树深度为B+1,右子树深度为A+1,即B + 1。
对比插入后的树,可以知道只有原最高节点的深度发生变化,所以只需更新该节点的深度。
另外一种情况:
插入后:
O
/ \
O A
/ \
B C
/
O
此时如果单旋转,结果为:
O
/ \
B O
/ \
C A
/
O
明显这个情况并没有得到解决。
所以首先要单右旋转最高节点的左子树,结果为:
O
/ \
C A
/ \
O O
/
B
此时可以知道C集合的深度发生了变化,需要更新C的深度,而之前更新的是最高点的深度,所以在旋转时需要更新原最高点和现最高点的深度。
第二次左旋转原最高点,结果为
C
/ \
O O
/ / \
B O A
这里面的正确有一些缺陷,应该把ABC集合多展开几层,否则在双旋转时的证明有些怪异,反正就是这个思路,因为画图实在是太麻烦了。
最后是代码:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
typedef struct _node
{
int element;
int high;
struct _node *lefttree;
struct _node *righttree;
}node; int gethigh(node *t)
{
if(t == )
return -;
return t->high;
} node *singlerotatewithleft(node *t)
{
node *tmp = t->lefttree;
t->lefttree = tmp->righttree;
tmp->righttree = t; tmp->high = ((gethigh(tmp->lefttree) > gethigh(tmp->righttree))?gethigh(tmp->lefttree):gethigh(tmp->righttree)) + ;
t->high = ((gethigh(t->lefttree) > gethigh(t->righttree))?gethigh(t->lefttree):gethigh(t->righttree)) + ;
return tmp;
} node *singlerotatewithright(node *t)
{
node *tmp = t->righttree;
t->righttree = tmp->lefttree;
tmp->lefttree = t; tmp->high = ((gethigh(tmp->lefttree) > gethigh(tmp->righttree))?gethigh(tmp->lefttree):gethigh(tmp->righttree)) + ;
t->high = ((gethigh(t->lefttree) > gethigh(t->righttree))?gethigh(t->lefttree):gethigh(t->righttree)) + ;
return tmp;
} node *doubleroratewithleft(node *t)
{
t->lefttree = singlerotatewithright(t->lefttree);
return singlerotatewithleft(t);
} node *doubleroratewithright(node *t)
{
t->righttree = singlerotatewithleft(t->righttree);
return singlerotatewithright(t);
} node *insert(node *t,int element)
{
if (t == )
{
t = (node *)malloc(sizeof(node));
t->element = element;
t->lefttree = t->righttree = ;
}
else if(t->element > element){
t->lefttree = insert(t->lefttree,element);
if(gethigh(t->lefttree) - gethigh(t->righttree) == )
if(element < t->lefttree->element)
t= singlerotatewithleft(t);
else
t= doubleroratewithleft(t);
}
else if(t->element < element){
t->righttree = insert(t->righttree,element);
if(gethigh(t->righttree) - gethigh(t->lefttree) == )
if(element > t->righttree->element)
t= singlerotatewithright(t);
else
t= doubleroratewithright(t); }
t->high = ((gethigh(t->lefttree) > gethigh(t->righttree))?gethigh(t->lefttree):gethigh(t->righttree)) + ;
return t;
} node *find(node *t,int element)
{
if(t == )
return ;
else if(t->element > element)
return find(t->lefttree,element);
else if(t->element < element)
return find(t->righttree,element);
else
return t;
} node* findmin(node *t)
{
if(t == )
return ;
if(t->lefttree == )
return t;
else
return findmin(t->lefttree);
} node *delele(node *t,int element)
{
if(t == )
return ;
else if(t->element > element)
t->lefttree = delele(t->lefttree,element);
else if(t->element < element)
t->righttree = delele(t->righttree,element);
else
{
if(t->lefttree && t->righttree)
{
node *tmp;
tmp = findmin(t->righttree);
t->element = tmp->element;
t->righttree = delele(t->righttree,tmp->element);
}
else
{
node *tmp;
tmp = t->lefttree?t->lefttree:t->righttree;
free(t);
t = tmp;
}
}
return t;
} void printtree(node *t)
{
if(t == )
return;
printtree(t->lefttree);
printf("%d\t",t->element);
printf("high = %d\n",t->high);
printtree(t->righttree);
} int main()
{
int a[] = {,,,,,,,,};
node *t;
int i = ;
t = insert(,);
for(;i<;i++){
t = insert(t,a[i]);
//printtree(t);
//sleep(1);
}
//t = delele(t,6);
printtree(t);
printf("\n");
//while(1);
return ;
}
avl树的操作证明的更多相关文章
- AVL树插入操作实现
为了提高二插排序树的性能,规定树中的每个节点的左子树和右子树高度差的绝对值不能大于1.为了满足上面的要求需要在插入完成后对树进行调整.下面介绍各个调整方式. 右单旋转 如下图所示,节点A的平衡因子(左 ...
- AVL树相关操作
#include <iostream> using namespace std; //AVL树的节点 template<typename T> class TreeNode { ...
- 纸上谈兵:AVL树
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点 ...
- 纸上谈兵: AVL树[转]
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点 ...
- 树-二叉搜索树-AVL树
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路 ...
- 图解数据结构树之AVL树
AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节点的两个子 ...
- 数据结构树之AVL树(平衡二叉树)
一 什么是AVL树(平衡二叉树): AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.在AVL树中任何节 ...
- AVL树Python实现
# coding=utf-8 # AVL树Python实现 def get_height(node): return node.height if node else -1 def tree_mini ...
- AVL树(平衡二叉树)
定义及性质 AVL树:AVL树是一颗自平衡的二叉搜索树. AVL树具有以下性质: 根的左右子树的高度只差的绝对值不能超过1 根的左右子树都是 平衡二叉树(AVL树) 百度百科: 平衡二叉搜索树(Sel ...
随机推荐
- Android USB Gadget复合设备驱动(打印机)测试方法
启动Android打印机设备,并用USB线连接电脑主机及Android打印机. Android打印机系统启动完成后,在Windows设备管理器中,可以看到Android Phone设备和USB打印支持 ...
- BZOJ 2243: [SDOI2011]染色 [树链剖分]
2243: [SDOI2011]染色 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6651 Solved: 2432[Submit][Status ...
- 嵌入式Linux驱动学习之路(二十一)字符设备驱动程序总结和块设备驱动程序的引入
字符设备驱动程序 应用程序是调用C库中的open read write等函数.而为了操作硬件,所以引入了驱动模块. 构建一个简单的驱动,有一下步骤. 1. 创建file_operations 2. 申 ...
- flex引起height:100%失效
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...
- git教程链接
http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000
- 关于包含pom.xml的开源项目如何导入
1. 开源项目导入eclipse的一般步骤 2. 使用Eclipse构建Maven项目 (step-by-step) 3. 第一次安装和使用maven
- JQuery中each()的使用方法说明
JQuery中each()的使用方法说明 对于jQuery对象,只是把each方法简单的进行了委托:把jQuery对象作为第一个参数传递给jQuery的each方法.换句话说:jQuery提供的eac ...
- 微信支付开发(1) JS API支付
关键字:微信支付 微信支付v3 jsapi支付 统一支付 Native支付 prepay_id 作者:方倍工作室原文: http://www.cnblogs.com/txw1958/p/wxpayv3 ...
- 关于今天很热的--FizzBuzzWhizz
今天早上到现在看到了3篇关于FizzBuzzWhizz的问题,第一篇是@程序媛想事儿(Alexia)[最难面试的IT公司之ThoughtWorks代码挑战--FizzBuzzWhizz游戏]其实题目不 ...
- 使用java库中的对称加密算法
对称加密算法是说加密方和解密方使用相同的密钥.常见的对称加密算法包括4个,DES,DESede(3DES),AES,PBE. 本文讨论的内容是加密算法,不是Message Digest,不是编码.下面 ...