合法的必要条件是每个点两维坐标和奇偶性相同,同时这也是充分条件

令$d_{i}=\{2^{0},2^{1},...,2^{m-1}\}$,归纳其可以走到任意满足$|x|+|y|<2^{m}$的$(x,y)$,考虑先确定其最后一步,即对于$|x|+|y|<2^{m+1}$,通过$d=2^{m}$使其走到$|x'|+|y'|<2^{m}$的位置

不妨假设$|x|<|y|$,则有$|x|<2^{m}$,然后令$y'=y-sign(y)\cdot 2^{m}$,对$|y|$分类讨论:

1.$|y|<2^{m}$,此时$|x|+|y'|=|x|+2^{m}-|y|<2^{m}$

2.$|y|\ge 2^{m}$,此时$|x|+|y'|=|x|+|y|-2^{m}<2^{m+1}-2^{m}=2^{m}$

还有初始条件,当$d=\{2^{0}\}$,发现要保证$|x|+|y|=1$才合法,换言之若两个数和为偶数则不合法,对于这种情况,强制先走到$(1,0)$即可

由此,即证明上述结论,同时得出构造方法

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 int n,x[N],y[N];
5 int sign(int k){
6 if (k>0)return 1;
7 return -1;
8 }
9 int main(){
10 scanf("%d",&n);
11 for(int i=1;i<=n;i++)scanf("%d%d",&x[i],&y[i]);
12 int p=(abs(x[1]+y[1])&1);
13 for(int i=2;i<=n;i++)
14 if ((abs(x[i]+y[i])&1)!=p){
15 printf("-1");
16 return 0;
17 }
18 printf("%d\n",(31+(!p)));
19 for(int i=30;i>=0;i--)printf("%d ",(1<<i));
20 if (!p){
21 printf("1");
22 for(int i=1;i<=n;i++)x[i]--;
23 }
24 printf("\n");
25 for(int i=1;i<=n;i++){
26 for(int j=30;j>=0;j--){
27 if (abs(x[i])<abs(y[i])){
28 if (y[i]>0)printf("U");
29 else printf("D");
30 y[i]=y[i]-sign(y[i])*(1<<j);
31 }
32 else{
33 if (x[i]>0)printf("R");
34 else printf("L");
35 x[i]=x[i]-sign(x[i])*(1<<j);
36 }
37 }
38 if (!p)printf("R");
39 printf("\n");
40 }
41 }

[atARC103D]Robot Arms的更多相关文章

  1. AtCoder Regular Contest 103 Problem D Robot Arms (构造)

    题目链接  Problem D 给定$n$个坐标,然后让你构造一个长度为$m$的序列, 然后给每个坐标规定一个长度为$m$的序列,ULRD中的一个,意思是走的方向, 每次从原点出发按照这个序列方向,每 ...

  2. [Atcoder ARC103D]Robot Arms

    题目大意:平面上有$n$个点,要求你构造$m$条边(满足$m\leqslant40$),使得可以从原点到达给定的$n$个点(边必须平行于坐标轴).并要求输出每一条边的方向,每条边必须都使用,无解输出$ ...

  3. Robot Arms AtCoder - 4432 (构造)

    大意: 给定平面上$n$个点$(x_i,y_i)$. 要求构造一个序列$d$, $d_i$表示每步走的距离, 再构造$n$个命令串, 要求从原点出发按照第$i$个命令走, 走完恰好到达$(x_i,y_ ...

  4. 「ARC103D」Robot Arms「构造」

    题意 给定\(n\)个点,你需要找到一个合适的\(m\)和\(d_1,d_2,...,d_m\),使得从原点出发每次向四个方向的某一个走\(d_i\)个单位,最终到达\((x_t, y_t)\).输出 ...

  5. 2293: Distribution Center 中南多校

    Description The factory of the Impractically Complicated Products Corporation has many manufacturing ...

  6. 【AtCoder】ARC103

    C - //// 为了防止一些多余的判断,我选择直接记录每个数的个数,然后枚举第一个数,找第一个数之外第二个数改变最少的情况下应该选什么 代码 #include <bits/stdc++.h&g ...

  7. AtCoder | ARC103 | 瞎讲报告

    目录 ARC 103 A.//// B.Robot Arms C.Tr/ee D.Distance Sums ARC 103 窝是传送门QwQ A.//// 题意 : 给你\(n\)(\(n\)为偶数 ...

  8. L161

    The robot arm made for gentle undersea explorationA soft robotic arm which will allow underwater sea ...

  9. ROS编译:catkin简析

    博客转载自:https://blog.csdn.net/zyh821351004/article/details/50388429 Catkin tutorials: http://wiki.ros. ...

随机推荐

  1. luogu1438无聊的数列(区间加等差数列,求一个数的和)

    QAQ一道线段树好题 题目大意: 给定一个有n个数的数列,共m种操作,有两种操作 \(1\ l\ r\ k\ d\)表示将\(a[l]\)~\(a[r]\)的数加一个以k为首相,d为公差 \(2\ x ...

  2. 微信小程序_快速入门02

    01我们学习了环境的准备和简单的demo,现在是时候来学习简单的页面编写了,首先我们来学习一些常用的基础标签: 一.view盒子,就是类似于div的盒子,可以用来存其他元素的容器. 二.text 文本 ...

  3. python中列表和元组的区别

    列表(list)特点: 1.可变类型且有序的,有索引值. 元组特点: 1.不可变类型且有序的,通过下标索引值访问 2.元组里面只有一个元素的时候该元组类型就是这个元素的类型.例如:t=(1) t的类型 ...

  4. Apache Beam入门及Java SDK开发初体验

    1 什么是Apache Beam Apache Beam是一个开源的统一的大数据编程模型,它本身并不提供执行引擎,而是支持各种平台如GCP Dataflow.Spark.Flink等.通过Apache ...

  5. Vulnstack内网靶场2

    环境配置 内网2靶场由三台机器构成:WIN7.2008 server.2012 server 其中2008做为对外的web机,win7作为个人主机可上网,2012作为域控 网络适配器已经设置好了不用自 ...

  6. Kali安装OWASP

    我是2019版的kali,里面并没有自带OWASP工具,因为OWASP不再更新的因素,所以新版kali将它移除了  安装OWASP apt-get install zaproxy #以下都是安装软件时 ...

  7. Kafka消息(存储)格式及索引组织方式

    要深入学习Kafka,理解Kafka的存储机制是非常重要的.本文介绍Kafka存储消息的格式以及数据文件和索引组织方式,以便更好的理解Kafka是如何工作的. Kafka消息存储格式 Kafka为了保 ...

  8. 零基础入门必备的Linux命令和C语言基础

    文件和目录(底部有视频资料) cd /home 进入 '/ home' 目录' cd - 返回上一级目录 cd -/- 返回上两级目录 cd 进入个人的主目录 cd ~user1 进入个人的主目录 c ...

  9. CSP-S 2021 爆零记

    前言 本人今年高二蒟蒻OIer,高一刚刚接触OI. 感觉可能要直接退役了555~ 希望还有机会靠NOIP翻盘 Day - 暑假 为了备战CSP提前返校,与xzh一起划水,总之刷了不少题,我也大受震撼 ...

  10. tcp 三次握手建立连接难点总结

    所谓三次握手(Three-way Handshake),是指建立一个TCP连接时,需要客户端和服务器总共发送3个包. 三次握手的目的是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号 ...