题面传送门

神仙题。

首先这个两次加密略微有点棘手,咱们不妨先从一次加密的情况入手考虑这个问题。显然,一次加密等价于将加密过的序列划分成若干段,每一段都是 \(xd\) 的形式表示这一段中有 \(x\) 个字符 \(d\)。那么我们就可以设 \(dp_{i}\) 表示原字符串长度为 \(i\) 的前缀可以由多少个字符串经过一次加密得到,转移就枚举上一段结尾 \(j(j\le i-2)\) 然后转移即可,只不过 \(j\) 可以转移到 \(i\) 需要满足两个条件:一是上一段的结尾与这一段的结尾不同,即 \(s_i\ne s_j\),二是这一段不能出现前导零,即 \(s_{j+1}\ne 0\)。

接下来考虑两次加密的情况,我们还是按照一次加密的情况枚举上一段的结尾 \(j\),这样第一次解密出来就是 \(x\) 个字符 \(d\),其中 \(x\) 是 \(s[j+1...i-1]\) 连接而成的 \(i-j-1\) 位数,\(d\) 是 \(s_j\) 表示的数。以 \(x=6,d=5\) 为例,第二次解密共有以下划分方法:

  • 直接跳过这 \(x\) 位数,或者说,这次解密出来的 \(6\) 个 \(5\) 完全被划分在同一段中,并且最后一个 \(5\) 不是这一段的结尾,比方说前面有 \(3\) 个 \(3\),后面有 \(2\) 个 \(7\),那么第二次解密出来的结果如下:\(3335555557\) 个 \(7\)
  • 上一段没有剩余的字符留下来,并且这段中间被断开,那么由于划分出来相邻两段的最后一个字符不能相同,故这 \(x\) 个 \(d\) 最多被切一刀(否则假设这两个断点分别为 \(i,j\),那么显然 \(s_i,s_j\) 为这两段的结尾,而由于 \(s_i=s_j\),不符合要求)。还是以 \(x=6,d=5\),前面有 \(3\) 个 \(3\),后面有 \(2\) 个 \(7\) 的情况为例,有以下 \(5\) 种划分方法:
    • \(333|55|555577\)
    • \(333|555|55577\)
    • \(333|5555|5577\)
    • \(333|55555|577\)
    • \(333|555555|77\)
  • 上一段有剩余的字符留下来,并且这段中间被断开,照样采用上面的例子,不妨设前面三个 \(3\) 在第二、三个 \(3\) 中间切了一道,那么有以下 \(6\) 种划分方式:
    • \(33|35|5555577\)
    • \(33|355|555577\)
    • \(33|3555|55577\)
    • \(33|35555|5577\)
    • \(33|355555|577\)
    • \(33|3555555|77\)

受到这个思想的启发,我们可以设 \(dp_{i,d,k}\) 表示当前解密了原字符串的前 \(i\) 位,在第一次解密出来的字符串中进行划分,划分出来最后一段的最后一位为 \(d\),当前第一次解密出来的字符串中是否有字符还没有划分为完整的一段的情况为 \(k\) 的方案数。转移还是枚举原字符串中上一段的右端点位置为 \(j\),上一段最后一个字符 \(p\),我们假设 \(s[j+1...i-1]\) 组成的数为 \(x\),\(s_i=d\),那么可以分以下情况:

  • 第一次解密出来的 \(x\) 个 \(d\) 中间没有划分,那么显然这 \(x\) 个 \(d\) 还没有被划分为完整的一段,故 \(dp_{i,p,1}\leftarrow dp_{j,p,1},dp_{i,p,1}\leftarrow dp_{j,p,0}\),当然如果 \(d=0\) 就不能从 \(dp_{j,p,0}\) 转移,因为这样会出现 \(pppp|000...0\) 的情况,就会出现前导零了。
  • 上一段没有剩余的字符留下来,并且这段中间被断开,那么共有 \(x-1\) 种可能,其中 \(x-2\) 种有字符剩余,\(1\) 种没有字符剩余,故 \(dp_{i,d,1}\leftarrow dp_{j,p,0}·(x-2),dp_{i,d,0}\leftarrow dp_{j,p,0}\),当然如果 \(d=0\) 或 \(d=p\) 就无法转移了,因为会出现前导零或者相邻两段结尾位置相同的情况,\(x=1\) 时无法转移到 \(dp_{i,d,1}\)。
  • 上一段有剩余的字符留下来,并且这段中间被断开,那么共有 \(x\) 种可能,其中 \(x-1\) 种有字符剩余,\(1\) 种没有字符剩余,故 \(dp_{i,d,1}\leftarrow dp_{j,p,1}·(x-1),dp_{i,d,0}\leftarrow dp_{j,p,1}\),同理如果 \(d=0\) 或 \(x=1\) 也无法转移到 \(dp_{i,d,1}\),因为划分出来下一段的第一个字符为 \(0\),不合法。

最终答案即为 \(dp_{n,s_n,0}\)。

时间复杂度 \(10n^2\)

const int MAXN=500;
const int MOD=1e9+9;
int n,dp[MAXN+5][11][2],pw10[MAXN+5];
struct StringDecryption{
int decrypt(vector<string> code){
string s;
for(int i=0;i<code.size();i++) s=s+code[i];
n=s.size();s=" "+s;dp[0][10][0]=pw10[0]=1;
for(int i=1;i<=n;i++) pw10[i]=10ll*pw10[i-1]%MOD;
for(int i=1;i<=n;i++){
int sum=0,dig=s[i]-'0';
for(int j=i-2;~j;j--){
sum=(sum+1ll*pw10[i-2-j]*(s[j+1]-'0'))%MOD;
if(s[j+1]=='0'||s[j]==s[i]) continue;
// printf("%d %d %d\n",i,j,sum);
for(int k=0;k<=10;k++){
if(dig!=0) dp[i][k][1]=(dp[i][k][1]+dp[j][k][0])%MOD;
dp[i][k][1]=(dp[i][k][1]+dp[j][k][1])%MOD;
if(dig!=k){
if(dig!=0){
if(!(j==i-2&&sum==1)) dp[i][dig][1]=(dp[i][dig][1]+1ll*(sum-2+MOD)*dp[j][k][0])%MOD;
dp[i][dig][1]=(dp[i][dig][1]+1ll*(sum-1+MOD)*dp[j][k][1])%MOD;
}
dp[i][dig][0]=(dp[i][dig][0]+dp[j][k][1])%MOD;
if(dig!=0&&!(j==i-2&&sum==1)) dp[i][dig][0]=(dp[i][dig][0]+dp[j][k][0])%MOD;
}
}
}
// printf("%d %d\n",dp[i][dig][0],dp[i][dig][1]);
} return dp[n][s[n]-'0'][0];
}
};

Topcoder 10748 - StringDecryption(dp)的更多相关文章

  1. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  2. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  3. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  4. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  5. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  6. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  7. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  8. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  9. 最长公共子序列长度(dp)

    /// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...

随机推荐

  1. 【UE4 C++】打印字符串与输出日志

    打印屏幕 默认打印屏幕 // 打印至屏幕 FString screenMessage = "(AddOnScreenDebugMessage) Hello world!"; GEn ...

  2. java中this关键字总结

    1.this是一个引用,也是一个变量,存储在JVM堆内存的Java对象内部. 2.this变量中保存的内存地址指向自身. 3.this可以在实例方法中使用,this指向当前正在执行这个动作的对象(th ...

  3. Redis:学习笔记-02

    Redis:学习笔记-02 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 4. 事物 Redis 事务本 ...

  4. 加法运算替代 牛客网 程序员面试金典 C++ Python

    加法运算替代 牛客网 程序员面试金典 题目描述 请编写一个方法,实现整数的乘法.减法和除法运算(这里的除指整除).只允许使用加号. 给定两个正整数int a,int b,同时给定一个int type代 ...

  5. 第12课 OpenGL 显示列表

    显示列表: 想知道如何加速你的OpenGL程序么?这一课将告诉你如何使用OpenGL的显示列表,它通过预编译OpenGL命令来加速你的程序,并可以为你省去很多重复的代码. 这次我将教你如何使用显示列表 ...

  6. 恶意代码分析实战五:OllyDebug动态结合

    目录 恶意代码分析实战五:OllyDebug动态结合 OllyDebug界面介绍 OllyDebug载入程序方法 OllyDebug地址跳转 OllyDebug下断点 OllyDebug单步执行 Ol ...

  7. 【微服务理论】API + BFF

    对于微服务,常见的架构模型就是API网关+服务. API网关实现鉴权.负载均衡.中间件等公共入口逻辑. 服务实现具体的业务功能. 那么,API网关设计中又有什么坑呢? 1.0版本 直接将服务穿透到外网 ...

  8. elementUI合并表格span-method用法

    官方文档 参考链接一 参考链接二

  9. dart系列之:dart类中的构造函数

    目录 简介 传统的构造函数 命名构造函数 构造函数的执行顺序 重定向构造函数 Constant构造函数 工厂构造函数 总结 简介 dart作为一种面向对象的语言,class是必不可少的.dart中所有 ...

  10. Part 28 AngularJS default route

    At the moment the problem is that, if you try to navigate to a route that is not configured, you wil ...