Pandas 简介

pandas 是 python 内基于 NumPy 的一种工具,主要目的是为了解决数据分析任务。Pandas 包含了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。

学习 pandas 需要主要掌握的技能包括

  1. 汇总和计算描述统计,处理缺失数据 ,层次化索引;
  2. 清理、转换、合并、重塑、groupby 技术;
  3. 日期和时间数据类型及工具(日期处理方便地飞起);

本文参考主要介绍包括 Python科学计算:庖丁解牛之Pandas10 Minutes to pandas

数据类型

pandas 包含两个主要数据类型为 SeriesDataFrame,其中 Series 为一位向量,DataFrame 为二维数组。

import numpy as np
import pandas as pd s = pd.Series([1, 3, 5, np.nan, 6, 8])

利用 NumPy 数组可以构造 DataFrame 数组,如下所示

In [5]: dates = pd.date_range('20130101', periods=6)

In [6]: dates
Out[6]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) In [8]: df
Out[8]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

数据可视化

为了对数据进行可视化,pandas包含了多种方法。基本可视化功能包括:观察头部与底部数据

In [13]: df.head()
Out[13]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3)
Out[14]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示数据索引:

In [15]: df.index
Out[15]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [16]: df.columns
Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() 可以将数据转化为 NumPy 数组类型。注意,这种方法在 DataFrame 内包含多种数组类型时可能会需要较长的转化时间,因为 NumPy 仅有一种数据类型。此外,DataFrame.to_numpy() 在输出时候不包括索引和标签列。

describe() 可以显示数据的快速统计摘要:

In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

数据转置:

In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按轴排序:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序:

In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

数据访问

为了进一步对DataFrame中数据进行操作,需要掌握数据的访问方法。在pandas中,提供了多种数据访问形式。

切片

在DataFrame中选取一个单列时,相当于构造一个Series对象

In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

通过 [] 可以对数据部分进行选择,获得仅包含部分索引的切片数据

In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

通过标签切片

DataFrame中也可以通过数据的标签进行选取。

首先,DataFrame中数据标签类似于矩阵的列,但是标签除了数字形式,可以有更加直观的名称,如字符串等。下图展示了DataFrame中按照标签截取的主要方法

同时,也可以按照索引进行切片,在DataFrame中,索引类似矩阵的行号。在调用 loc 进行切片时,只要输入一个参数即可选取特定行

In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

此时截取后数据为原始数据中第一行索引,类型为 Series 数据。

当然也可以在多轴上选择:

In [27]: df.loc[:, ['A', 'B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

其中第一个标签 : 代表选取所有索引。也可以同时选取索引和标签列:

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

当确定数据的索引和标签时候,也可以用 at 命令快速访问,iat 为按照序号索引进行访问,二者对应如下午所示

In [31]: df.at[dates[0], 'A']
Out[31]: 0.4691122999071863

总结来说,在索引或切片 DataFrame时,可以用基于位置的 at 和 loc,二者功能是相似的。

通过编号选取

除了标签,也可以用整数编号对数据某行索引进行选择,与 loc 对应的有 iloc:

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

通过两个序列编号方法则与 numpy 中数据读取类似

In [33]: df.iloc[3:5, 0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

也可以用列表形式选取索引

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

也可以用整数编号作为索引快速访问数组内容

In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858

布尔索引

在 DataFrame 中可以用单列值选择数据

In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

也可以用满足布尔条件的DataFrame中选择值

In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988

赋值

当为DataFrame赋值新的列时,将按照索引自动对齐数据。

In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64 In [47]: df['F'] = s1

按照上面数据读取方法,也可按照索引进行赋值:

In [48]: df.at[dates[0], 'A'] = 0
In [49]: df.iat[0, 1] = 0
In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

缺失数据处理

重新索引时允许更改/删除/添加指定轴上索引,并返回数据的副本

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1

In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

删除缺少数据行可以用 dropna 方法计算

In [58]: df1.dropna(how='any')
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

也可用 fillna 填充丢失数据

In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

数据操作

数据统计

可以用函数对各列或行数据进行统计

In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64

函数计算

可以将函数应用于数据计算

In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

字符串方法

Series 在 str 属性中配备了字符串方法,可以对数据每个元素进行操作。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

数据合并

数据结合

pandas 可将 Series 和 DataFrame 对象与各种用于索引和关系的功能组合在一起。

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

插入

插入时可按照 SQL 样式进行插入

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2 In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5 In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

另一个类似的示例为

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2 In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5 In [86]: pd.merge(left, right, on='key')
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5

增加数据

append 命令可以增加数据

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])

In [88]: df
Out[88]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True)
Out[90]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610

数据分组

数据分组可将 DataFrame 中功能独立地应用于每个组

In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B': ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C': np.random.randn(8),
....: 'D': np.random.randn(8)})
....: In [92]: df
Out[92]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
In [93]: df.groupby('A').sum()
Out[93]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

数据重构

首先对 DataFram 数据表进行初始化

In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
.....: 'B': ['A', 'B', 'C'] * 4,
.....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D': np.random.randn(12),
.....: 'E': np.random.randn(12)})
.....: In [106]: df
Out[106]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

数据透视表可通过 pivot_table 方法生成数据透视表,其中 values 为表值,index 为透视表索引,columns 为数据列名。

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826

时间序列

数据类别

数据绘图

当使用 plot 函数时,可以很方便地绘制带有标签的所有列,并在图例中显示对应的标签名:

In [135]: ts = pd.Series(np.random.randn(1000),
.....: index=pd.date_range('1/1/2000', periods=1000))
.....: In [136]: ts = ts.cumsum() In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f24a8b314d0>

数据IO

pandas 可从多种类型文件中获取数据,例如可以写入或读取csv文件

In [143]: df.to_csv('foo.csv')

In [144]: pd.read_csv('foo.csv')
Out[144]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
.. ... ... ... ... ...
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

写入或读取 HDF5 文件

In [145]: df.to_hdf('foo.h5', 'df')

In [146]: pd.read_hdf('foo.h5', 'df')
Out[146]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
... ... ... ... ...
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]

写入或读取 excel 文件

In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[148]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
.. ... ... ... ... ...
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

Pandas 简介的更多相关文章

  1. python之pandas简介

    一. Pandas简介 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和 ...

  2. python库pandas简介

    pandas是基于numpy的数据分析模块,提供了大量标准模型和高效操作大型数据集所需要的工具. pandas主要提供了3种数据结构:1.Series,带标签的一维数组:2.DataFrame,带标签 ...

  3. Python中的结构化数据分析利器-Pandas简介

    Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发tea ...

  4. 数据分析工具pandas简介

    什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建 ...

  5. Python数据分析与展示[第三周](pandas简介与数据创建)

    第三周的课程pandas 分析数据 http://pandas.pydata.org import pandas as pd 常与numpy matplotlib 一块定义 d=pd.Series(r ...

  6. 数据分析 Pandas 简介和它的的数据结构

    本文主要讲Pandas 的Series和DataFrame 的相关属性和操作 1.Series的相关属性和操作# --Series是一种类似于一维数组的对象,只能存放一维数组!由以下两部分组成:# v ...

  7. 【划重点】Python pandas简介

    一.pandas获取Excel表单的两种方式 import pandas as pd df1 = pd.DataFrame(pd.read_excel(r'C:\Users\ASUS\Desktop\ ...

  8. pandas简介

  9. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

随机推荐

  1. CentOS 用户与群组

    目录 1.用户管理 1.1.切换用户 1.2.添加用户 1.3.删除用户 1.4.修改用户 2.群组管理 2.1.查看群组 2.2.添加群组 2.3.删除群组 2.4.修改群组 1.用户管理 Linu ...

  2. win10安装git fatal: open /dev/null or dup failed: No such file or directory错误解决方法

    原因看大家意思应该是 非即插即用驱动文件null.sys问题. 网上有很多方案.最后试了一个可行的. 替换  windows/system32/drivers/null.sys为网盘中的文件即可. 链 ...

  3. Spring DeferredResult 异步请求

    Spring DeferredResult 异步请求 一.背景 二.分析 三.实现要求 四.后端代码实现 五.运行结果 1.超时操作 2.正常操作 六.DeferredResult运行原理 六.注意事 ...

  4. springboot整合rabbitmq实现生产者消息确认、死信交换器、未路由到队列的消息

    在上篇文章  springboot 整合 rabbitmq 中,我们实现了springboot 和rabbitmq的简单整合,这篇文章主要是对上篇文章功能的增强,主要完成如下功能. 需求: 生产者在启 ...

  5. 零基础入门c语言函数之递归函数

    今天来总结一下关于递归函数的使用方面的问题. 递归函数就是在函数使用的时候自己调用自己,层层调用,来实现你想要的功能. 有两个最常用的例子,我们来写一下. (1)计算阶乘 #include int f ...

  6. RabbitMQ多消费者顺序性消费消息实现

    最近起了个项目消息中心,用来中转各个系统中产生的消息,用到的是RabbitMQ,由于UAT环境.生产环境每台消费者服务都是多台,有些消息要求按顺序消费,所以需要采取一定的措施保证消息的顺序消费,下面讲 ...

  7. 从零开始,无DNS vcenter 6.7 vmotion热迁移,存储集群部署文档。

    1,环境准备 准备:Vmware workstation环境 IP地址段规划 ESXI主机IP地址段 192.168.197.4-192.168.197.10 Vcenter Server集群IP地址 ...

  8. Linux 用户&用户组

    用户和用户组的概念 用户 ---> 使用操作系统的人 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系 ...

  9. CURD系统怎么做出技术含量--怎样引导面试

    引子 很多朋友可能会因为自己做的工作不是特别核心或者业务简单而引起面试中没有自信.但是很多公司面试的时候是可以接受面试者之前岗位的并发量.交易量低一些的.比如我们要招聘和我们交易量同等级或者以上的出来 ...

  10. vue强制组件重新渲染

    有时候,依赖 Vue 响应方式来更新数据是不够的,相反,我们需要手动重新渲染组件来更新数据.或者,我们可能只想抛开当前的DOM,重新开始.那么,如何让Vue以正确的方式重新呈现组件呢? 强制 Vue ...