1.原理的区别

主要区别在于,非加权组平均法(UPGMA)是基于平均链接方法的聚集层次聚类方法,而邻接法(NJ)是基于最小演化准则的迭代聚类法。

UPGMA的假定条件是:在进化过程中,每一世系发生趋异的次数相同,即核苷酸或氨基酸的替换速率是均等且恒定的。

UPGMA生成有根树,而NJ生成无根树。由于UPGMA方法假定演化速率相等,因此分支末端相等,NJ方法允许不相等的演化速率,因此分支长度与变化量成正比。

UPGMA示意图:

NJ示意图:

UPGMA是一种简单,快速但不可靠的方法,而NJ方法是一种相对较快的方法,与UPGMA方法相比,效果更好。 当然也要看具体目的。

二者区别总结:

2.实操比较

我用Plink处理得到样本的亲缘关系矩阵(IBD)文件,示例如下:

library(ape) #用于NJ法
df <- read.delim("prefix.ibdM0", sep = "\t",header=TRUE, row.names=1)
df[1:5,1:5]
df <- data.matrix(df)
str(df)

UPGMA

如果直接用亲缘关系矩阵,hclust函数(stats包)识别不了。

#hclust对象需要转化为距离
tr3 <- as.phylo(stats::hclust(df,method="average")) #UPGMA
str(tr3)
plot(tr3, cex=1)

使用dist计算距离:

tr4 <- as.phylo(hclust(dist(df),method="average"))
str(tr4)
plot(tr4, cex=1)

NJ法

而在NJ法中,有没有dist都可以。但有没有转化距离二者还是有一些差别的,建议还是转化后使用。

tr1 <- bionj(df)  #或nj(df)
str(tr1)
plot(tr1, cex=1) tr2 <- bionj(dist(df))
str(tr2)
plot(tr2, cex=1)

没用dist:



用dist:

保存树文件

树文件在R中是一个列表,包括节点和边等信息:

保存树文件:

write.tree(tr1,"test.nwk")

NJ和UPGMA生成的树都可这样保存,保存后就可导入其他软件美化了。

更深理解

如果想要更进一步的了解,建议看看这个教程:

Module 24: An Intro to Phylogenetic Tree Construction in R

包含了极大似然法ML等。

Ref: https://pediaa.com/difference-between-upgma-and-neighbor-joining-tree/

系统发育树邻接法(NJ)和非加权组平均法(UPGMA)之比较的更多相关文章

  1. B+树,B树,聚集索引,非聚集索引

    简介: B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有 B+树索引可以分为聚集索引和非聚集索引 mysql使用B+树,其中Myisam是非聚集索引,innoDB是聚集索引 聚簇索引索 ...

  2. MEGA软件——系统发育树构建方法(图文讲解) 转载

    转载:http://www.plob.org/2012/12/02/4927.html 一.序列文本的准备 构树之前先将目标基因序列都分别保存为txt文本文件中(或者把所有序列保存在同一个txt文本中 ...

  3. PHP正则中的捕获组与非捕获组

    今天遇到一个正则匹配的问题,忽然翻到有捕获组的概念,手册上也是一略而过,百度时无意翻到C#和Java中有对正则捕获组的特殊用法,搜索关键词有PHP时竟然没有相关内容,自己试了一下,发现在PHP中也是可 ...

  4. php 正则表达式捕获组与非捕获组

    熟练掌握正则表达式是每个程序员的基础要求,对于每个初学者来说会被正则表达式一连串字符弄得头晕眼花.博主便会如此,一直对正则表达式有种莫名的恐惧.近来看到另一位博友写的 <php正则表达式> ...

  5. java正则表达式 非捕获组详解

    这几天看了下正则表达式,对非捕获组(non-capturing)进行下总结.主要总结 1个 + 2组  一共5个.(?:X) (?=X) (?<=X) (?!X) (?<!X) 一.先从( ...

  6. JAVA正则表达式-捕获组与非捕获组

    Java捕获组与非捕获组的问题 先看例子: import java.util.regex.Matcher; import java.util.regex.Pattern; public class P ...

  7. java 捕获组与非捕获组

    非捕获组:格式:(?:xxxx), 如:(?:aaa)\\w+(bbb)\\1,\\1 代表重复捕获的第一组即是(bbb) public static void main(String[] args) ...

  8. zstu.4191: 无向图找环(dfs树 + 邻接表)

    4191: 无向图找环 Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 117  Solved: 34 Description 给你一副无向图,每条边有 ...

  9. Stern-Brocot树 及 法里级数分析

    Stern-Brocot树产生了所有分子分母互素的分数 从初始0/1 1/0 -> m/n m'/n'出发,不断往中间添加 (m+m')/(n+n')容易推得 n * m' - m * n' = ...

随机推荐

  1. 974.和可被K整除的子数组

    题目 给定一个整数数组 A,返回其中元素之和可被 K 整除的(连续.非空)子数组的数目. 示例: 输入:A = [4,5,0,-2,-3,1], K = 5 输出:7 解释: 有 7 个子数组满足其元 ...

  2. 6. 站在巨人的肩膀学习Java Filter型内存马

    本文站在巨人的肩膀学习Java Filter型内存马,文章里面的链接以及图片引用于下面文章,参考文章: <Tomcat 内存马学习(一):Filter型> <tomcat无文件内存w ...

  3. CODING 助力江苏高速信息实现组织敏捷与研发敏捷,领跑智慧交通新基建

    疫情之下的高速公路管控重任 江苏高速公路信息工程有限公司(以下简称:江苏高速信息)成立于 2002 年,是江苏交通控股旗下,专业从事高速公路领域机电系统集成.智能交通软硬件研发.大数据分析运营的高新技 ...

  4. C语言链表实例--玩转链表

    下图为最一简单链表的示意图: 第 0 个结点称为头结点,它存放有第一个结点的首地址,它没有数据,只是一个指针变量.以下的每个结点都分为两个域,一个是数据域,存放各种实际的数据,如学号 num,姓名 n ...

  5. 确定字符互异 牛客网 程序员面试金典 C++ Python

    确定字符互异 牛客网 程序员面试金典 C++ Python 题目描述 请实现一个算法,确定一个字符串的所有字符是否全都不同.这里我们要求不允许使用额外的存储结构. 给定一个string iniStri ...

  6. 详细剖析Spring Cloud 和Spring Cloud Alibaba的前世今生

    我们知道spring cloud可以用来开发微服务,但是应该很少有人真正知道Spring Cloud是什么. 官方的解释是:spring cloud提供了一些可以让开发者快速构建分布式应用的工具,这些 ...

  7. Linux&C———进程间通信

    管道和有名管道 消息队列 共享内存 信号 套接字 由于进程之间的并不会像线程那样共享地址空间和数据空间,所以进程之间就必须有自己特有的通信方式,这篇博客主要介绍自己了解到的几种进程之间的通信方式,内容 ...

  8. 后台管理系统:vue&node&MongoDB(一)

    后台管理系统 使用工具: Vue    Node     Mongodb   Element-ui 一.后台(Node+Mongodb) 前期准备: 需要下载的包: mongooes -------- ...

  9. 浅讲.Net 6 并与之前版本写法对比

    介绍 昨天vs2022正式版已经推出了,估计很多人已经下载并开始创建.Net 6 开始尝鲜了, 本节我简要的给大家介绍一下.Net 6的一些改动. 正文 本次.Net6带来最明显的变化就是: 采用顶级 ...

  10. jmeter压测IP欺骗绕过服务端限流

    1.环境声明 jmeter3.0 后端为内网环境 2.检查内网闲置的ip 工具地址,无需复杂安装,解压点击就可以用啦~~ https://pan.baidu.com/s/1Yzs1vezfFMoy-m ...