作 者:道哥,10+年的嵌入式开发老兵。

公众号:【IOT物联网小镇】,专注于:C/C++、Linux操作系统、应用程序设计、物联网、单片机和嵌入式开发等领域。 公众号回复【书籍】,获取 Linux、嵌入式领域经典书籍。

转 载:欢迎转载文章,转载需注明出处。

在第一篇文章中,我们就提到,现代操作系统是从最古老的 8086 系统一步一步发展而来的。

处理器厂商为了向后兼容,很多底层相关的原理都是一样的(如果不兼容,就会丢弃市场份额)。

特别是从系统上电之后,一直到操作系统中第一个进程(Linux 下就是 init 进程)运行起来,这其中经历了 BIOS、引导程序、操作系统这三元大将的接力跑。

今天,我们从几个特殊的地址的角度,来从宏观节点上看一下系统的启动过程。

0xFFFF:0x0000

这个地址,是处理器上电之后的第一个重要的物理地址。

从地址的书写形式上,就可以看出这是 8086 系统中实模式下的段寻址方式:段地址 * 16 + 偏移量。

段地址:0xFFFF

偏移地址:0x0000

计算得到物理地址:0xFFFF0

当处理器的 reset 引脚被触发后,处理器首先进行硬件初始化,也就是把处理器内部的每个寄存器都设置为一个初始的默认状态:

把段寄存器 cs 设置为 0xFFFF,指令寄存器 ip 设置为 0x0000;

把其它的所有寄存器设置为 0x0000;

当所有的初始化完成之后,CPU 就开始执行第一条指令。

之前说过,CPU 是很傻、很单纯的,它只知道去 cs:ip 所指向的地址处,取出一条指令,执行完之后,再取出下一条指令继续执行。。。

每一条指令的第一个字节都是操作码,CPU 根据操作码,能够知道当前指令的字节长度,并把 ip 寄存器指向下一条指令。

既然硬件初始化时,已经把 cs 初始化为 0xFFFF,把 ip 初始化为 0x0000,经过段寻址的公式计算之后,就得到了物理地址:0xFFFF0,也就是说,CPU 执行的第一条指令位于物理地址 0xFFFF0 这个地方。

那么,这个物理地址中,存放着什么指令呢?

首先来复习一下地址范围的相关知识:

8086 处理器有 20 根地址线,寻址范围是:0x00000 ~ 0xFFFFF,最大就是 1 MB。

但是 8086 的处理器是 16 位的,寄存器最大表示的范围是 0xFFFF,也就是 64 KB。

采用【段基址:偏移量】来表示一个段时,这个段的最大偏移范围就是 64 KB。

我们再回到系统的启动流程。

在上电之后,硬件会把一个 ROM 芯片,映射到内存地址空间的最高地址空间,也即是 1 MB 的位置,如图:

ROM 芯片中存放的就是 BIOS 代码,称作:基本输入输出系统(Basic Input/Output System)。

此时,cs:ip 计算得到的物理地址为 0xFFFF0,正好落在映射到 ROM 的这块内存空间。

因此,从这个地址中获取到指令,其实就是从 ROM 中读取的。

所谓的映射:就是访问某个地址空间中的内容时,就会自动定位到被映射的目标物理设备中进行访问,这是由硬件来保证的。

CPU 在执行指令的时候,ip 寄存器是递增的,也就是说会从低地址到高地址,依次执行每一条指令。

但是此时第一条指令的地址就是 0xFFFF0,已经快接近 1 MB 地址空间的顶端了,只有 16 个字节的地址空间。

如果执行到顶端,溢出之后,就会回绕到最低地址 0x00000

因此,在这个第一条指令的位置处,是一条跳转指令:

跳转目标是 0xF000:0xE05B,计算得到物理地址 0xFE05B,可以看到同样是落在映射到 ROM 的地址空间中(好像是废话:此时只能执行 BIOS 中的代码)。

0xF000:0xE05B

这个地址处的代码,才是 BIOS 真正开始执行的地方。BIOS 所做的事情包括:

侦测硬件设备:系统中有哪些硬件设备,工作状态是什么;

对硬件设备进行初始化:比如最初始的中断向量表;

侦测操作系统启动设备:选择好一个系统盘之后,把系统盘中主引导扇区中的引导程序读取到内存中;

BIOS 的最后一个步骤中,它把引导程序读取到内存中 0x0000:0x7C00 地址处,计算得到物理地址就是:0x07C00

这个地址的内存空间,被硬件映射到 RAM 芯片中。

具体的说就是,硬件把内存空间 0x00000 ~ 0x9FFFF 映射到随机存储器中,一共是 640 KB 的空间。

注意:虽然地址空间有 640 KB 这么大,但是实际的 RAM 大小可能只有可怜的 32 KB,因此实际可用的空间取决于物理芯片。

中间空着的那块地址空间,映射到一些外设。

0x0000:0x7C00

这个地址,就是操作系统的引导代码被读取到内存中的地方。

在内存地址的刚开始位置(0x00000~0x003FF),存放着中断向量表。

可以看到:操作系统引导代码并没有从中断向量表之后的 0x00400 开始存放,而是被放在了 0x07C00 这个地方:

至于为什么要这么放置,有很多的说法,比较靠谱的解释是这样的:

假如实际的 RAM 芯片只有 32 KB(不要用现代的眼光来看,在 N久 之前,RAM 还是非常的珍贵),那么内存布局就是这样:

在此也鄙视一下现在很多的应用软件,动不动就占用那么多的内存,都以为整个电脑只为它一家软件服务的?!

可以看到,引导代码几乎位于 RAM 的顶端了,这样的话,从中断向量开始的 0x00400,一直到引导代码的 0x07C00,这块地址空间就是连续的一整块,可以被操作系统更方便的操作。

另外,把引导代码放在 RAM 的高地址处,还有一个好处:

当引导代码最终把接力棒交给操作系统之后,引导代码就没有任何用处了。

因此,操作系统就可以直接把引导代码所在的地址空间中内容,全部抹掉,为自己所用!

------ End ------

推荐阅读

【1】C语言指针-从底层原理到花式技巧,用图文和代码帮你讲解透彻

【2】一步步分析-如何用C实现面向对象编程

【3】原来gdb的底层调试原理这么简单

【4】内联汇编很可怕吗?看完这篇文章,终结它!

其他系列专辑:精选文章C语言Linux操作系统应用程序设计物联网

星标公众号,能更快找到我!

Linux从头学05-系统启动过程中的几个神秘地址,你知道是什么意思吗?的更多相关文章

  1. Linux从头学02:x86中内存【段寻址】方式的来龙去脉

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  2. Linux从头学06:16张结构图,彻底理解【代码重定位】的底层原理

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  3. Linux从头学07:中断那么重要,它的本质到底是什么?

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  4. Linux从头学03:如何告诉 CPU,代码段、数据段、栈段在内存中什么位置?

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  5. Linux 从头学 01:CPU 是如何执行一条指令的?

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  6. Linux从头学08:Linux 是如何保护内核代码的?【从实模式到保护模式】

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  7. Linux从头学09:x86 处理器如何进行-层层的内存保护?

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  8. Linux从头学10:三级跳过程详解-从 bootloader 到 操作系统,再到应用程序

    作 者:道哥,10+年的嵌入式开发老兵. 公众号:[IOT物联网小镇],专注于:C/C++.Linux操作系统.应用程序设计.物联网.单片机和嵌入式开发等领域. 公众号回复[书籍],获取 Linux. ...

  9. Linux从头学13:想彻底搞懂“系统调用”的底层原理?建议您别错过这篇【调用门】

    作 者:道哥,10+年嵌入式开发老兵,专注于:C/C++.嵌入式.Linux. 关注下方公众号,回复[书籍],获取 Linux.嵌入式领域经典书籍:回复[PDF],获取所有原创文章( PDF 格式). ...

随机推荐

  1. Perm 排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  2. 在线博客转PDF电子书 | JS爬虫初探

    最近在看一位大佬写的源码解析博客,平时上下班用手机看不太得劲,但是平板又没有网卡,所以就想搞个离线pdf版,方便通勤时间学习阅读. 所以,问题来了: 怎么把在线网页内容转成pdf? 这位大佬的博客是用 ...

  3. C#串口通信——DtrEnable 和RtsEnable 两个属性

    转自 http://www.cnblogs.com/hengbo/archive/2011/12/19/2293272.html 在开发中有些串口设备需要串口供电(本人在开发门禁系统时,对起落杆进行控 ...

  4. CMake 两种变量原理

    目录 [TOC] 1.两种变量的定义参考 2.两种变量的作用域原理及使用 1.Normal Variables (1).包含 add_subdirectory().function().(本质是值拷贝 ...

  5. Spring Boot 无侵入式 实现RESTful API接口统一JSON格式返回

    前言 现在我们做项目基本上中大型项目都是选择前后端分离,前后端分离已经成了一个趋势了,所以总这样·我们就要和前端约定统一的api 接口返回json 格式, 这样我们需要封装一个统一通用全局 模版api ...

  6. Flask(5)- 动态路由

    前言 前面几篇文章讲的路由路径(rule)都是固定的,就是一个路径和一个视图函数绑定,当访问这条路径时会触发相应的处理函数 这样无法处理复杂的情况,比如常见的一个课程分类下有很多个课程,那么他们的 p ...

  7. Docker安装MySQL8.0

    环境 CentOS 7.5 Docker 1.13.1 MySQL 8.0.16 安装 拉取镜像 默认拉取最新版本的镜像 $ docker pull mysql 如果要指定版本,使用下面的命令 $ d ...

  8. CentOS-Docker搭建远程监控服务器指标

    注:远程监控服务器指标,可查看.CPU.内存.网络信息等,搭建依赖Docker环境,可参考:yum安装Docker环境 服务端:Grafana(可视化展示) + Prometheus(数据源,配置客户 ...

  9. CentOS-关闭防火墙和禁用安全策略

    关闭防火墙 默认使用的是firewall作为防火墙 查看防火墙状态 $ firewall-cmd --state 停止firewall $ systemctl stop firewalld.servi ...

  10. Sublime3 markdown preview 修改输出的html页面默认宽度

    在sublime3 中安装了 Markdown Preview,Ctrl+B生成的HTML页面显示很窄,默认值为width: 45em,很多代码不能完整显示,需要拖动进度条,于是想要调整默认的宽度. ...