最短路径问题 Dijkstra ——Python实现
1 class Vertex:
2 #顶点类
3 def __init__(self,vid,outList):
4 self.vid = vid #出边
5 self.outList = outList #出边指向的顶点id的列表,也可以理解为邻接表
6 self.know = False #默认为假
7 self.dist = float('inf') #s到该点的距离,默认为无穷大
8 self.prev = 0 #上一个顶点的id,默认为0
9 def __eq__(self, other):
10 if isinstance(other, self.__class__):
11 return self.vid == other.vid
12 else:
13 return False
14 def __hash__(self):
15 return hash(self.vid)
1 #创建顶点对象
2 v1=Vertex(1,[2,3])
3 v2=Vertex(2,[3,4])
4 v3=Vertex(3,[5])
5 v4=Vertex(4,[3,5,6])
6 v5=Vertex(5,[6])
7 v6=Vertex(6,[])
8
9 #存储边的权值
10 edges = dict()
11 def add_edge(front,back,value):
12 edges[(front,back)]=value
13 add_edge(1,2,1)
14 add_edge(1,3,12)
15 add_edge(2,3,9)
16 add_edge(2,4,3)
17 add_edge(3,5,5)
18 add_edge(4,3,4)
19 add_edge(4,5,13)
20 add_edge(4,6,15)
21 add_edge(5,6,4)
1 #创建一个长度为7的数组,来存储顶点,0索引元素不存
2 vlist = [False,v1,v2,v3,v4,v5,v6]
3 #使用set代替优先队列,选择set主要是因为set有方便的remove方法
4 vset = set([v1,v2,v3,v4,v5,v6])
1 def get_unknown_min():#此函数则代替优先队列的出队操作
2 the_min = 0
3 the_index = 0
4 j = 0
5 for i in range(1,len(vlist)):
6 if(vlist[i].know is True):
7 continue
8 else:
9 if(j==0):
10 the_min = vlist[i].dist
11 the_index = i
12 else:
13 if(vlist[i].dist < the_min):
14 the_min = vlist[i].dist
15 the_index = i
16 j += 1
17 #此时已经找到了未知的最小的元素是谁
18 vset.remove(vlist[the_index])#相当于执行出队操作
19 return vlist[the_index]
1 def main():
2 #将v1设为顶点
3 v1.dist = 0
4
5 while(len(vset)!=0):
6 v = get_unknown_min()
7 print(v.vid,v.dist,v.outList)
8 v.know = True
9 for w in v.outList:#w为索引
10 if(vlist[w].know is True):
11 continue
12 if(vlist[w].dist == float('inf')):
13 vlist[w].dist = v.dist + edges[(v.vid,w)]
14 vlist[w].prev = v.vid
15 else:
16 if((v.dist + edges[(v.vid,w)])<vlist[w].dist):
17 vlist[w].dist = v.dist + edges[(v.vid,w)]
18 vlist[w].prev = v.vid
19 else:#原路径长更小,没有必要更新
20 pass
函数调用:
1 main()
2 print('v.dist 即为从起始点到该点的最短路径长度:')
3 print('v1.prev:',v1.prev,'v1.dist',v1.dist)
4 print('v2.prev:',v2.prev,'v2.dist',v2.dist)
5 print('v3.prev:',v3.prev,'v3.dist',v3.dist)
6 print('v4.prev:',v4.prev,'v4.dist',v4.dist)
7 print('v5.prev:',v5.prev,'v5.dist',v5.dist)
8 print('v6.prev:',v6.prev,'v6.dist',v6.dist)
运行结果:
1 0 [2, 3]
2 1 [3, 4]
4 4 [3, 5, 6]
3 8 [5]
5 13 [6]
6 17 []
v.dist 即为从起始点到该点的最短路径长度:
v1.prev: 0 v1.dist 0
v2.prev: 1 v2.dist 1
v3.prev: 4 v3.dist 8
v4.prev: 2 v4.dist 4
v5.prev: 3 v5.dist 13
v6.prev: 5 v6.dist 17
最短路径问题 Dijkstra ——Python实现的更多相关文章
- 最短路径算法-Dijkstra
Dijkstra是解决单源最短路径的一般方法,属于一种贪婪算法. 所谓单源最短路径是指在一个赋权有向图中,从某一点出发,到另一点的最短路径. 以python代码为例,实现Dijkstra算法 1.数据 ...
- 最短路径算法Dijkstra和A*
在设计基于地图的游戏,特别是isometric斜45度视角游戏时,几乎必须要用到最短路径算法.Dijkstra算法是寻找当前最优路径(距离原点最近),如果遇到更短的路径,则修改路径(边松弛). Ast ...
- 最短路径算法——Dijkstra,Bellman-Ford,Floyd-Warshall,Johnson
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 ...
- 单源最短路径(dijkstra算法)php实现
做一个医学项目,当中在病例评分时会用到单源最短路径的算法.单源最短路径的dijkstra算法的思路例如以下: 如果存在一条从i到j的最短路径(Vi.....Vk,Vj),Vk是Vj前面的一顶点.那么( ...
- 最短路径算法-Dijkstra算法的应用之单词转换(词梯问题)(转)
一,问题描述 在英文单词表中,有一些单词非常相似,它们可以通过只变换一个字符而得到另一个单词.比如:hive-->five:wine-->line:line-->nine:nine- ...
- 最短路径之Dijkstra算法和Floyd-Warshall算法
最短路径算法 最短路径算法通常用在寻找图中任意两个结点之间的最短路径或者是求全局最短路径,像是包括Dijkstra.A*.Bellman-Ford.SPFA(Bellman-Ford的改进版本).Fl ...
- 【算法设计与分析基础】25、单起点最短路径的dijkstra算法
首先看看这换个数据图 邻接矩阵 dijkstra算法的寻找最短路径的核心就是对于这个节点的数据结构的设计 1.节点中保存有已经加入最短路径的集合中到当前节点的最短路径的节点 2.从起点经过或者不经过 ...
- POJ 3790 最短路径问题(Dijkstra变形——最短路径双重最小权值)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3790 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你 ...
- 最短路径问题---Dijkstra算法详解
侵删https://blog.csdn.net/qq_35644234/article/details/60870719 前言 Nobody can go back and start a new b ...
随机推荐
- 用好idea这几款插件,可以帮你少写30%的代码
Easycode是idea的一个插件,可以直接对数据的表生成entity,controller,service,dao,mapper,无需任何编码,简单而强大. 1.安装(EasyCode) 我这里的 ...
- NOIP模拟测试2「排列 (搜索)·APIO划艇」
排序 内存限制:128 MiB 时间限制:1000 ms 标准输入输出 题目描述 输入格式 数据范围与提示 对于30%的数据,1<=N<=4: 对于全部的数据,1<=N< ...
- 测试MySQL锁的问题
测试MySQL锁的问题 目录 测试MySQL锁的问题 1 Record Lock 2 Next-Key Lock 2 死锁测试 InnoDB支持三种行锁: Record Lock:单个行记录上面的锁 ...
- java入门了解、安装jdk及软件的选择
学习编程,一些必要的dos命令还是需要掌握的. 以下只是列出常用的: cd 目录路径: 进入一个目录 cd .. 进入父目录 dir 查看本目录下的文件和子目录列表 cls 清除屏幕命令 上下键 ...
- Unity中各种查找物体的方法
本文转自博主:Teng的世界 https://blog.csdn.net/teng_ontheway/article/details/47188141 GameObject.Find().Transf ...
- 深入理解 Android ANR 触发原理以及信息收集过程
一.概述 作为 Android 开发者,相信大家都遇到过 ANR.那么为什么会出现 ANR 呢,ANR 之后系统都做了啥.文章将对这个问题详细解说. ANR(Application Not respo ...
- HDU 4445 Crazy Tank 高中物理知识忘得差不多了
题意不难理解,仔细看题吧,就不说题意了 #include <iostream> #include <cstdio> #include <cstring> #incl ...
- Zoho Books十年发展历程
十年前,我们推出Zoho Books的时候,是为了全面解决企业面临的财务和会计方面的挑战.我们逐渐地从一开始的易用的中小企业在线会计工具,发展成为现在的解决企业复杂的财务挑战的解决方案,其中经历了很多 ...
- Linux使用shell脚本监控
(1)性能监控脚本 performance.sh #!/bin/bash #-------------------------------------------------------------- ...
- 解决mount.nfs: access denied by server while mounting
在linux下进行挂载时突然出现: mount.nfs: access denied by server while mounting 第一感觉是读取文件权限不够,准备去更改一下挂载点的权限,但又考 ...