[hdu6978]New Equipments II
显然可以费用流来做,具体建图如下——
点集:源点,汇点,左边$n$个工人,右边$n$个设备
边集:源点向第$i$个工人连$(1,a_{i})$的边,第$i$个设备向汇点连$(1,b_{i})$的边,工人向可用的设备连$(1,0)$的边
跑最小费用最大流,流量为$i$时的费用即为$i$时的答案
但注意到要跑$n$次spfa,每一次的最坏复杂度为$o(n^{3})$,显然无法通过
实际上,spfa即找到$x$和$y$,使得第$x$个工人和第$y$个设备都未被使用过,且第$x$个工人能流到第$y$个设备,在此基础上最大化$a_{x}+b_{y}$,那么不妨手动来实现此功能
考虑按照$a_{i}$从大到小枚举左边未被使用过的的工人,并递归其能流到的点,求出其中设备$b_{i}$的最大值
注意到当一个点已经被访问过,显然再访问一定不优于之前,单次复杂度即降为$o(n^{2})$
每一个点只会被访问一次,因此复杂度瓶颈在于遍历边集,使用bfs来代替dfs,并对点分类讨论:
1.对于工人,其几乎到所有设备都有边,缺的仅有$o(m)$条限制和$o(n)$条之前流过的边,因此只需要遍历所有当前未被访问的点,并搜索其中可以访问的点
注意到一个未访问的点被遍历,要么被访问,要么属于$o(n+m)$条边之一,因此总复杂度即$o(m)$
2.对于设备,其出边只有$o(n)$条之前流过的边的反向边,暴力遍历边集即可,总复杂度即$o(n)$
由此,单次复杂度降为$o(m)$,总复杂度即$o(nm)$,可以通过
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 4005
4 #define ll long long
5 queue<int>q;
6 vector<int>v[N];
7 int t,n,m,x,y,a[N],b[N],id[N],visa[N],visb[N],vis[N],nex[N],pre[N<<1],mx[N],e[N][N];
8 ll ans;
9 bool cmp(int x,int y){
10 return a[x]>a[y];
11 }
12 int bfs(int k){
13 int s=0;
14 q.push(k);
15 vis[k]=1;
16 while (!q.empty()){
17 int k=q.front();
18 q.pop();
19 if (k<=n){
20 for(int i=nex[0],j=0;i<=n;j=i,i=nex[i])
21 if (e[k][i]){
22 pre[i+n]=k;
23 q.push(i+n);
24 nex[j]=nex[i],i=j;
25 }
26 }
27 else{
28 k-=n;
29 if ((!visb[k])&&(b[s]<b[k]))s=k;
30 for(int i=0;i<v[k].size();i++)
31 if (!vis[v[k][i]]){
32 pre[v[k][i]]=k+n;
33 q.push(v[k][i]);
34 vis[v[k][i]]=1;
35 }
36 }
37 }
38 return s;
39 }
40 int calc(){
41 int ans=0;
42 for(int i=1;i<=n;i++)vis[i]=0;
43 for(int i=0;i<=n;i++)nex[i]=i+1;
44 for(int i=1;i<=(n<<1);i++)pre[i]=0;
45 for(int i=1;i<=n;i++){
46 mx[i]=0;
47 if ((!visa[id[i]])&&(!vis[id[i]])){
48 mx[i]=bfs(id[i]);
49 if (mx[i])ans=max(ans,a[id[i]]+b[mx[i]]);
50 }
51 }
52 if (!ans)return 0;
53 for(int i=1;i<=n;i++)
54 if ((mx[i])&&(a[id[i]]+b[mx[i]]==ans)){
55 visa[id[i]]=1,visb[mx[i]]=1;
56 for(int lst=mx[i]+n,j=pre[lst];j;lst=j,j=pre[j]){
57 if (j<=n){
58 e[j][lst-n]=0;
59 v[lst-n].push_back(j);
60 }
61 else{
62 e[lst][j-n]=1;
63 for(int k=0;k<v[j-n].size();k++)
64 if (v[j-n][k]==lst){
65 v[j-n].erase(v[j-n].begin()+k);
66 break;
67 }
68 }
69 }
70 break;
71 }
72 return ans;
73 }
74 int main(){
75 scanf("%d",&t);
76 while (t--){
77 scanf("%d%d",&n,&m);
78 ans=0;
79 for(int i=1;i<=n;i++){
80 visa[i]=visb[i]=0;
81 v[i].clear();
82 }
83 for(int i=1;i<=n;i++)
84 for(int j=1;j<=n;j++)e[i][j]=1;
85 for(int i=1;i<=n;i++){
86 scanf("%d",&a[i]);
87 id[i]=i;
88 }
89 sort(id+1,id+n+1,cmp);
90 for(int i=1;i<=n;i++)scanf("%d",&b[i]);
91 for(int i=1;i<=m;i++){
92 scanf("%d%d",&x,&y);
93 e[x][y]=0;
94 }
95 for(int i=1;i<=n;i++){
96 int s=calc();
97 if (!s){
98 for(;i<=n;i++)printf("-1\n");
99 break;
100 }
101 ans+=s;
102 printf("%lld\n",ans);
103 }
104 }
105 return 0;
106 }
[hdu6978]New Equipments II的更多相关文章
- Leetcode 笔记 113 - Path Sum II
题目链接:Path Sum II | LeetCode OJ Given a binary tree and a sum, find all root-to-leaf paths where each ...
- Leetcode 笔记 117 - Populating Next Right Pointers in Each Node II
题目链接:Populating Next Right Pointers in Each Node II | LeetCode OJ Follow up for problem "Popula ...
- 函数式Android编程(II):Kotlin语言的集合操作
原文标题:Functional Android (II): Collection operations in Kotlin 原文链接:http://antonioleiva.com/collectio ...
- 统计分析中Type I Error与Type II Error的区别
统计分析中Type I Error与Type II Error的区别 在统计分析中,经常提到Type I Error和Type II Error.他们的基本概念是什么?有什么区别? 下面的表格显示 b ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- [LeetCode] Guess Number Higher or Lower II 猜数字大小之二
We are playing the Guess Game. The game is as follows: I pick a number from 1 to n. You have to gues ...
- [LeetCode] Number of Islands II 岛屿的数量之二
A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...
- [LeetCode] Palindrome Permutation II 回文全排列之二
Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...
- [LeetCode] Permutations II 全排列之二
Given a collection of numbers that might contain duplicates, return all possible unique permutations ...
随机推荐
- Winfrom窗体初始化和窗体Load方法前后
运行结果为 [窗体初始化之前!]>[窗体初始化!]>[窗体Load!]
- 基于querybuilder的可根据现有数据表自动生成Restful API的dotnet中间件
AutoApi 基于SqlKata Query Builder的可根据数据表自动生成Restful API的dotnet中间件 项目地址 Github Gitee 支持的数据库 MySql AutoA ...
- 关于django配置好静态文件后打开相关图片页显示404的解决方法
在url里设置以上代码即可,即可解决图片显示异常(出现此问题的根本原因是django版本)django3后需要加以上代码)
- 每日总结:Java基本语法 (2021.9.23)
对象:对象是类的一个实例,有状态和行为. 类:类是一个模板,它描述一类对象的行为和状态. 方法:方法就是行为,一个类可以有很多方法. 实例变量:每个对象都有独特的实例变量,对象的状态由这些实 ...
- 洛谷3317 SDOI2014重建(高斯消元+期望)
qwq 一开始想了个错的做法. 哎 直接开始说比较正确的做法吧. 首先我们考虑题目的\(ans\)该怎么去求 我们令\(x\)表示原图中的某一条边 \[ans = \sum \prod_{x\in t ...
- Java(17)面向对象之多态
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201621.html 博客主页:https://www.cnblogs.com/testero ...
- CSS引入字体文件
在css引入字体文件可以直接把以下代码复制到css文件中 /* 字体声明 */ @font-face {font-family: 'icomoon';src: url('fonts/icomoon.e ...
- find+xargs+sed批量替换
写代码时经常遇到要把 .c 和 .h的文件中的某些内容全部替换的情况,用sourceinsight 进行全局的查找是一个方法,但是sourceinsight只能替换一个文件中的字符串,不能同时替换多 ...
- vue3.x移动端页面基于vue-router的路由切换动画
移动端页面切换一般都具有动画,我们既然要做混合开发,做完之后还是不能看起来就像一个网页,所以我们基于vue-router扩展了一个页面切换push和pop的动画.这是一篇比较硬核的帖子,作者花了不少精 ...
- DDD领域驱动设计-案例建模设计-Ⅲ
1. 背景 参考<DDD领域驱动设计-案例需求文档>,本文将构建实体,聚合根详述领域驱动中的建模设计.构建实体,聚合根的一些原则或方法,将在后续文章中说明. 2. 建模设计 2.1. 实体 ...