目录

Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models.[J]. arXiv: Computer Vision and Pattern Recognition, 2018.

@article{samangouei2018defense-gan:,

title={Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models.},

author={Samangouei, Pouya and Kabkab, Maya and Chellappa, Rama},

journal={arXiv: Computer Vision and Pattern Recognition},

year={2018}}

本文介绍了一种针对对抗样本的defense方法, 主要是利用GAN训练的生成器, 将样本\(x\)投影到干净数据集上\(\hat{x}\).

主要内容

我们知道, GAN的损失函数到达最优时, \(p_{data}=p_G\), 又倘若对抗样本的分布是脱离于\(p_{data}\)的, 则如果我们能将\(x\)投影到真实数据的分布\(p_{data}\)(如果最优也就是\(p_G\)), 则我们不就能找到一个防御方法了吗?

对于每一个样本, 首先初始化\(R\)个随机种子\(z_0^{(1)}, \ldots, z_0^{(R)}\), 对每一个种子, 利用梯度下降(\(L\)步)以求最小化

\[\tag{DGAN}
\min \quad \|G(z)-x\|_2^2,
\]

其中\(G(z)\)为利用训练样本训练的生成器.

得到\(R\)个点\(z_*^{(1)},\ldots, z_*^{(R)}\), 设使得(DGAN)最小的为\(z^*\), 以及\(\hat{x} = G(z^*)\), 则\(\hat{x}\)就是我们要的, 样本\(x\)在普通样本数据中的投影. 将\(\hat{x}\)喂入网络, 判断其类别.

另外, 作者还在实验中说明, 可以直接用\(\|G(z^*)-x\|_2^2 \frac{<}{>} \theta\) 来判断是否是对抗样本, 并计算AUC指标, 结果不错.

注: 这个方法, 利用梯度方法更新的难处在于, \(x \rightarrow \hat{x}\)这一过程, 包含了\(L\)步的内循环, 如果直接反向传梯度会造成梯度爆炸或者消失.

DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS的更多相关文章

  1. Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers

    目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...

  2. Defending Adversarial Attacks by Correcting logits

    目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...

  3. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  4. AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets

    目录 概 主要内容 符号说明 Original Generator Transfer the Generator Wang X., He K., Guo C., Weinberger K., Hopc ...

  5. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  6. KDD 2019放榜!录取率仅14%,强调可重现性

    [导读]KDD 2019录取结果终于放榜了,今年Research和ADS两个 track共评审论文1900篇,其中Research track的录取率只有14%.今年也是KDD第一次采用双盲评审政策, ...

  7. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

    目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...

  8. 论文解读(GAN)《Generative Adversarial Networks》

    Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...

  9. Generative Adversarial Nets[Wasserstein GAN]

    本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...

随机推荐

  1. 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念

    0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...

  2. Linux磁盘分区(一)之fdisk命令

    Linux磁盘分区(一)之fdisk命令转自:https://www.cnblogs.com/machangwei-8/p/10353683.html 一.fdisk 的介绍fdsik 能划分磁盘成为 ...

  3. Apache架构师的30条设计原则

    本文作者叫 Srinath,是一位科学家,软件架构师,也是一名在分布式系统上工作的程序员. 他是 Apache Axis2 项目的联合创始人,也是 Apache Software 基金会的成员. 他是 ...

  4. gen already exists but is not a source folder. Convert to a source folder or rename it 的解决办法

    1. Right click on the project and go to "Properties" //鼠标右键点击项目,然后选中Properties   2. Select ...

  5. clickhouse 输入输出格式

    TabSeparated.TabSeparatedRaw.TabSeparatedWithNames和TabSeparatedWithNamesAndTypes TabSeparated 默认格式,缩 ...

  6. 用运oracel中的伪列rownum分页

    在实际应用中我们经常碰到这样的问题,比如一张表比较大,我们只要其中的查看其中的前几条数据,或者对分页处理数据.在这些情况下我们都需要用到rownum.因此我们要理解rownum的原理和使用方法. Or ...

  7. Actuator监控器

    一.简介 Actuator(激励者;执行器)是Spring Boot提供的一个可挺拔模块,用于对工程进行监控.其通过不同的监控终端实现不同的监控功能.其功能与Dubbo的监控中心类似,不同的是,Dub ...

  8. 最基础前端路由实现,事件popstate使用

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  9. 【JavaScript】创建全0的Array

    1.创建一个长度为m的全0数组 var arr = new Array(m).fill(0); 2.创建一个m行n列的全0数组 var arr = new Array(m).fill(new Arra ...

  10. linux系统目录初识

    目录 今日内容概要 内容详细 系统目录结构介绍 目录结构知识描述 今日内容概要 系统目录结构介绍 目录结构详细描述 内容详细 系统目录结构介绍 # 1.linux系统中的目录 一切从根开始 结构拥有层 ...