DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS
@article{samangouei2018defense-gan:,
title={Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models.},
author={Samangouei, Pouya and Kabkab, Maya and Chellappa, Rama},
journal={arXiv: Computer Vision and Pattern Recognition},
year={2018}}
概
本文介绍了一种针对对抗样本的defense方法, 主要是利用GAN训练的生成器, 将样本\(x\)投影到干净数据集上\(\hat{x}\).
主要内容
我们知道, GAN的损失函数到达最优时, \(p_{data}=p_G\), 又倘若对抗样本的分布是脱离于\(p_{data}\)的, 则如果我们能将\(x\)投影到真实数据的分布\(p_{data}\)(如果最优也就是\(p_G\)), 则我们不就能找到一个防御方法了吗?
对于每一个样本, 首先初始化\(R\)个随机种子\(z_0^{(1)}, \ldots, z_0^{(R)}\), 对每一个种子, 利用梯度下降(\(L\)步)以求最小化
\min \quad \|G(z)-x\|_2^2,
\]
其中\(G(z)\)为利用训练样本训练的生成器.
得到\(R\)个点\(z_*^{(1)},\ldots, z_*^{(R)}\), 设使得(DGAN)最小的为\(z^*\), 以及\(\hat{x} = G(z^*)\), 则\(\hat{x}\)就是我们要的, 样本\(x\)在普通样本数据中的投影. 将\(\hat{x}\)喂入网络, 判断其类别.
另外, 作者还在实验中说明, 可以直接用\(\|G(z^*)-x\|_2^2 \frac{<}{>} \theta\) 来判断是否是对抗样本, 并计算AUC指标, 结果不错.
注: 这个方法, 利用梯度方法更新的难处在于, \(x \rightarrow \hat{x}\)这一过程, 包含了\(L\)步的内循环, 如果直接反向传梯度会造成梯度爆炸或者消失.
DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS的更多相关文章
- Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers
目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...
- Defending Adversarial Attacks by Correcting logits
目录 概 主要内容 实验 Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by C ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- AT-GAN: A Generative Attack Model for Adversarial Transferring on Generative Adversarial Nets
目录 概 主要内容 符号说明 Original Generator Transfer the Generator Wang X., He K., Guo C., Weinberger K., Hopc ...
- 论文阅读 | Real-Time Adversarial Attacks
摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...
- KDD 2019放榜!录取率仅14%,强调可重现性
[导读]KDD 2019录取结果终于放榜了,今年Research和ADS两个 track共评审论文1900篇,其中Research track的录取率只有14%.今年也是KDD第一次采用双盲评审政策, ...
- Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...
- 论文解读(GAN)《Generative Adversarial Networks》
Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...
- Generative Adversarial Nets[Wasserstein GAN]
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...
随机推荐
- Java、Scala类型检查和类型转换
目录 Java 1.类型检查 2.类型转换 Scala 1.类型检查 2.类型转换 Java 1.类型检查 使用:变量 instanceof 类型 示例 String name = "zha ...
- HelloWorldModelMBean
package mbeanTest; import java.lang.reflect.Constructor; import javax.management.Descriptor; import ...
- mango后台
环境搭建 项目配置 下载后导入项目,删除mvnw.mvnw.cmd两个文件 修改spring-boot-starter-web pom.xml --> run as --> mave i ...
- shell条件测试语句实例-测试apache是否开启
终于理解了shell条件测试语句"!="和"-n"的用法区别,于是有了如下的shell脚本,做为练习. 第一种方法:测试apache是否开启?字符串测试 #!/ ...
- 一个简单的Extjs继承实现
function extend(sub,sup){ //目地:实现只继承父类的原型对象 //1.用一个空函数据中转,目地进行中转 var F = new Function(); //2.实现空函数的的 ...
- 【Linux】【Services】【Package】Basic
Linux程序包管理 概述 API:Application Program Interface ABI:Application Binary Int ...
- vs2019+windows服务+nancy+打包
一.创建windows服务 二.nuget包添加nancy 1.nancy 2.0.0和Nancy.Hosting.Self 2.0.0插件 2.项目添加文件夹Modules,在Modules文件夹 ...
- Redis版本历史
目录 Redis4.0 Redis3.2 Redis3.0 Redis2.8 Redis2.6 Redis4.0 可能出乎很多人的意料,Redis3.2之后的版本是4.0,而不是3.4.3.6.3.8 ...
- 位置式PID讲解
table { margin: auto } 一.公式拆解 \(PID\)公式展示: \[u(t)=K_p(e(t)+\frac{1}{T_t } ∫_0^te(t)dt+T_D \frac {de( ...
- HSPICE 电平触发D触发器仿真
一. HSPICE的基本操作过程 打开HSPICE程序,通过OPEN打开编写好的网表文件. 按下SIMULATE进行网表文件的仿真. 按下AVANWAVES查看波形图(仿真结果). 二. 网表文件结构 ...