InfoGAN
概
既然都能生成图片了, 那至少得能够抓住数据的特征信息, 解耦.
主要内容
一些GAN的输入会包括\((z, c)\), 其中\(z\)是噪声, 而\(c\)是一些别的信息, 比如标签信息, 一个很自然的问题是, 怎么保证GAN会利用这部分信息呢? 换言之, 怎么保证生成器生成的图片\(G(z, c)\)与\(c\)有不可否认的关联呢?
衡量两个随机变量关联性的指标, 经典的便是互信息
\]
在这个问题里就是
\]
直接估计互信息是很困难的, 利用变分方法可以得到一个有效的下界(这也是VAE的灵魂):
I(c,G(z,c)) & = \mathbb{E}_{x \sim P_G} \mathbb{E}_{P(c|x)} \log P(c|x) + H(c) \\
& = \mathbb{E}_{x \sim P_G} [\mathrm{KL}(P(c|x) \| Q(c|x)) + \mathbb{E}_{P(c|x)}\log Q(c|x)] + H(c) \\
& \ge \mathbb{E}_{x \sim P_G}\mathbb{E}_{P(c|x)}\log Q(c|x) + H(c)=: L_{I}(G, Q).
\end{array}
\]
其中\(Q\)是我们用来近似\(P(c|x)\)的. 上述还是存在一个问题, 即\(P(c|x)\)依然无法处理, 不过注意到
\]
我们可以给出一个合理的先验分布.
当\(c \in \mathcal{C}\)是离散的时候, 令\(Q\)的输出向量的长度为\(|\mathcal{C}|\), 可直接令该向量的softmax后的向量为概率向量;
当\(c\)是连续的时候, 倘若\(x=G(z, c^*)\), 则可以假设\(Q(c|x) \sim \mathcal{N}(c^*, \sigma^2 I)\), 此时
\]
最后的损失便为
\]
其中\(V(D, G)\)是普通的GAN的损失.
看一些InfoGAN的实现: \(z\)服从[0, 1]均匀分布, 类别标签服从均匀分布(\(1/K\)), 其他的用于描述角度宽度的\(c\)服从[-1, 1]的均匀分布.
实际上, 应该还是有一个超参数\(\sigma^2\)的, 但是当我们假设其与\(x\)无关的时候, 在损失部分其为一常数, 所以就不用管了(这和VAE在decoder部分的处理也是一致的).
估计是没弄好啊, 这没看出变化来.
InfoGAN的更多相关文章
- 学习笔记GAN003:GAN、DCGAN、CGAN、InfoGAN
GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Gen ...
- 深度学习-InfoGAN论文理解笔记
在弄清楚InfoGAN之前,可以先理解一下变分推断目的以及在概率论中的应用与ELBO是什么,以及KL散度 https://blog.csdn.net/qy20115549/article/detail ...
- InfoGan笔记
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
- 深度|OpenAI 首批研究成果聚焦无监督学习,生成模型如何高效的理解世界(附论文)
本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载,原文. 选自 Open AI 作者:ANDREJ KARPATHY, PIETER ABBEEL, GREG BRO ...
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
- [译]2016年深度学习的主要进展(译自:The Major Advancements in Deep Learning in 2016)
译自:The Major Advancements in Deep Learning in 2016 建议阅读时间:10分钟 https://tryolabs.com/blog/2016/12/06/ ...
- 一些相关的github
https://github.com/LTS4/DeepFool 貌似是说可以愚弄深度神经网络? https://github.com/tflearn/tflearn TF学习指南 http://gi ...
- (转)【重磅】无监督学习生成式对抗网络突破,OpenAI 5大项目落地
[重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生 ...
随机推荐
- org.apache.hadoop.hive.ql.metadata.HiveException: Internal Error: cannot generate all output rows for a Partition解决
自己在路径访问明细表开发时,写的sql如下 SELECT guid, sessionid, event['url'] as page, `timestamp` as ts, row_number() ...
- Linux学习 - 目录表
目录名 作用 权限 说明 /bin/ 存放系统命令的目录 所有用户 存放在/bin/下的命令单用户模式下也可以执行 /sbin/ 保存和系统环境设置相关的命令 root ...
- linux查询健康状态,如何直观的判断你的Linux系统是否健康
一提到对于查看系统运行的健康状况,可能大多数朋友考虑到的就是查看进程或者打开任务管理器,但是对于应用在真实生产环境中服务器的linux系统来说,以上两种方式都不是***效的查看方式,那么今天就给大家推 ...
- Reactor之发射器(Flux、Mono)转换操作函数
数据合并函数 由于业务需求有的时候需要将多个数据源进行合并,Reactor提供了concat方法和merge方法: concat public static <T> Flux<T&g ...
- Mysql资料 查询条件
目录 一.计算 二.比较 三.逻辑运算符 四.位运算符 五.优先顺序 一.计算 二.比较 三.逻辑运算符 四.位运算符 五.优先顺序 实际上,很少有人能将这些优先级熟练记忆,很多情况下我们都是用&qu ...
- 带你尝鲜LiteOS 组件EasyFlash
摘要:EasyFlash是一个开源的轻量级嵌入式闪存库. 本文分享自华为云社区<LiteOS组件尝鲜-玩转EasyFlash>,作者:Lionlace . 基本介绍 EasyFlash是一 ...
- Table.Combine追加…Combine(Power Query 之 M 语言)
数据源: 销量表和部门表 目标: 其中一表的数据追加到另一表后面,相同列直接追加,不同列增加新列 操作过程: 选取销量表>[主页]>[追加查询]/[将查询追加为新查询]>选择要追加的 ...
- 在【自定义列】中使用M函数(Power Query 之 M 语言)
数据源: "品名"一列 目标: 提取品名中的首字符,生成新列:"品名简称" 解决方案: 在[自定义列]中使用M函数Text.Start 步骤: 打开[自定义列] ...
- CF734B Anton and Digits 题解
Content 有 \(k_2\) 个 \(2\).\(k_3\) 个 \(3\).\(k_5\) 个 \(5\) 和 \(k_6\) 个 \(6\),你可以用这里面的数字来组成 \(256,32\) ...
- CF1065A Vasya and Chocolate 题解
Content 小 V 有 \(s\) 块钱,商店里有巧克力卖,每块巧克力 \(c\) 块钱,现在商店给出优惠:购买 \(a\) 块巧克力可以免费获得 \(b\) 块巧克力,求小 V 最多能够买到的巧 ...