实例详解 Java 死锁与破解死锁
锁和被保护资源之间的关系
我们把一段需要互斥执行的代码称为临界区。线程在进入临界区之前,首先尝试加锁 lock(),如果成功,则进入临界区,此时我们称这个线程持有锁;否则呢就等待,直到持有锁的线程解锁;持有锁的线程执行完临界区的代码后,执行解锁 unlock()。这样理解本身没有问题,但却很容易让我们忽视两个非常非常重要的点:我们锁的是什么?我们保护的又是什么?
我们知道在现实世界里,锁和锁要保护的资源是有对应关系的,比如你用你家的锁保护你家的东西,我用我家的锁保护我家的东西。在并发编程世界里,锁和资源也应该有这个关系,因此,一个好的锁模型如下图所示。
锁模型
首先,我们要把临界区要保护的资源标注出来,如图中临界区里增加了一个元素:受保护的资源 R;其次,我们要保护资源 R 就得为它创建一把锁 LR;最后,针对这把锁 LR,我们还需在进出临界区时添上加锁操作和解锁操作。另外,在锁 LR 和受保护资源之间,我特地用一条线做了关联,这个关联关系非常重要。很多并发 Bug 的出现都是因为把它忽略了,然后就出现了类似锁自家门来保护他家资产的事情,这样的 Bug 非常不好诊断,因为潜意识里我们认为已经正确加锁了。
受保护资源和锁之间的关联关系非常重要,他们的关系是怎样的呢?一个合理的关系是:受保护资源和锁之间的关联关系是 N:1 的关系。
互斥锁,在并发领域的知名度极高,只要有了并发问题,大家首先容易想到的就是加锁,因为大家都知道,加锁能够保证执行临界区代码的互斥性。这样理解虽然正确,但是却不能够指导你真正用好互斥锁。临界区的代码是操作受保护资源的路径,类似于球场的入口,入口一定要检票,也就是要加锁,但不是随便一把锁都能有效。所以必须深入分析锁定的对象和受保护资源的关系,综合考虑受保护资源的访问路径,多方面考量才能用好互斥锁。
synchronized 是 Java 在语言层面提供的互斥原语,其实 Java 里面还有很多其他类型的锁,但作为互斥锁,原理都是相通的:锁,一定有一个要锁定的对象,至于这个锁定的对象要保护的资源以及在哪里加锁 / 解锁,就属于设计层面的事情了。
对如何保护多个资源已经很有心得了,关键是要分析多个资源之间的关系。如果资源之间没有关系,很好处理,每个资源一把锁就可以了。如果资源之间有关联关系,就要选择一个粒度更大的锁,这个锁应该能够覆盖所有相关的资源。除此之外,还要梳理出有哪些访问路径,所有的访问路径都要设置合适的锁,这个过程可以类比一下门票管理。
我们再引申一下上面提到的关联关系,关联关系如果用更具体、更专业的语言来描述的话,其实是一种“原子性”特征,我们提到的原子性,主要是面向 CPU 指令的,转账操作的原子性则是属于是面向高级语言的,不过它们本质上是一样的。
“原子性”的本质是什么?其实不是不可分割,不可分割只是外在表现,其本质是多个资源间有一致性的要求,操作的中间状态对外不可见。例如,在 32 位的机器上写 long 型变量有中间状态(只写了 64 位中的 32 位),在银行转账的操作中也有中间状态(账户 A 减少了 100,账户 B 还没来得及发生变化)。所以解决原子性问题,是要保证中间状态对外不可见。
来看一个例子,银行转账的例子:
class Account {
private int balance;
// 转账
void transfer(Account target, int amt){
synchronized(Account.class) {
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
}
这里用 Account.class 作为互斥锁,来解决银行业务里面的转账问题,虽然这个方案不存在并发问题,但是所有账户的转账操作都是串行的,例如账户 A 转账户 B、账户 C 转账户 D 这两个转账操作现实世界里是可以并行的,但是在这个方案里却被串行化了,这样的话,性能太差。
试想互联网支付盛行的当下,8 亿网民每人每天一笔交易,每天就是 8 亿笔交易;每笔交易都对应着一次转账操作,8 亿笔交易就是 8 亿次转账操作,也就是说平均到每秒就是近 1 万次转账操作,若所有的转账操作都串行,性能完全不能接受。
那下面我们就尝试着把性能提升一下。
向现实世界要答案
现实世界里,账户转账操作是支持并发的,而且绝对是真正的并行,银行所有的窗口都可以做转账操作。只要我们能仿照现实世界做转账操作,串行的问题就解决了。
我们试想在古代,没有信息化,账户的存在形式真的就是一个账本,而且每个账户都有一个账本,这些账本都统一存放在文件架上。银行柜员在给我们做转账时,要去文件架上把转出账本和转入账本都拿到手,然后做转账。这个柜员在拿账本的时候可能遇到以下三种情况:
文件架上恰好有转出账本和转入账本,那就同时拿走;
如果文件架上只有转出账本和转入账本之一,那这个柜员就先把文件架上有的账本拿到手,同时等着其他柜员把另外一个账本送回来;
转出账本和转入账本都没有,那这个柜员就等着两个账本都被送回来。
上面这个过程在编程的世界里怎么实现呢?其实用两把锁就实现了,转出账本一把,转入账本另一把。在 transfer() 方法内部,我们首先尝试锁定转出账户 this(先把转出账本拿到手),然后尝试锁定转入账户 target(再把转入账本拿到手),只有当两者都成功时,才执行转账操作。这个逻辑可以图形化为下图这个样子。
两个转账操作并行示意图
而至于详细的代码实现,如下所示。经过这样的优化后,账户 A 转账户 B 和账户 C 转账户 D 这两个转账操作就可以并行了。
class Account {
private int balance;
// 转账
void transfer(Account target, int amt){
// 锁定转出账户
synchronized(this) {
// 锁定转入账户
synchronized(target) {
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
}
}
没有免费的午餐
上面的实现看上去很完美,并且也算是将锁用得出神入化了。相对于用 Account.class 作为互斥锁,锁定的范围太大,而我们锁定两个账户范围就小多了,这样的锁,叫细粒度锁。使用细粒度锁可以提高并行度,是性能优化的一个重要手段。
这个时候可能你已经开始警觉了,使用细粒度锁这么简单,有这样的好事,是不是也要付出点什么代价啊?编写并发程序就需要这样时时刻刻保持谨慎。
的确,使用细粒度锁是有代价的,这个代价就是可能会导致死锁。
在详细介绍死锁之前,我们先看看现实世界里的一种特殊场景。如果有客户找柜员张三做个转账业务:账户 A 转账户 B 100 元,此时另一个客户找柜员李四也做个转账业务:账户 B 转账户 A 100 元,于是张三和李四同时都去文件架上拿账本,这时候有可能凑巧张三拿到了账本 A,李四拿到了账本 B。张三拿到账本 A 后就等着账本 B(账本 B 已经被李四拿走),而李四拿到账本 B 后就等着账本 A(账本 A 已经被张三拿走),他们要等多久呢?他们会永远等待下去…因为张三不会把账本 A 送回去,李四也不会把账本 B 送回去。我们姑且称为死等吧。
转账业务中的“死等”
现实世界里的死等,就是编程领域的死锁了。死锁的一个比较专业的定义是:一组互相竞争资源的线程因互相等待,导致“永久”阻塞的现象。
上面转账的代码是怎么发生死锁的呢?我们假设线程 T1 执行账户 A 转账户 B 的操作,账户 A.transfer(账户 B);同时线程 T2 执行账户 B 转账户 A 的操作,账户 B.transfer(账户 A)。当 T1 和 T2 同时执行完①处的代码时,T1 获得了账户 A 的锁(对于 T1,this 是账户 A),而 T2 获得了账户 B 的锁(对于 T2,this 是账户 B)。之后 T1 和 T2 在执行②处的代码时,T1 试图获取账户 B 的锁时,发现账户 B 已经被锁定(被 T2 锁定),所以 T1 开始等待;T2 则试图获取账户 A 的锁时,发现账户 A 已经被锁定(被 T1 锁定),所以 T2 也开始等待。于是 T1 和 T2 会无期限地等待下去,也就是我们所说的死锁了。
class Account {
private int balance;
// 转账
void transfer(Account target, int amt){
// 锁定转出账户
synchronized(this){ ①
// 锁定转入账户
synchronized(target){ ②
if (this.balance > amt) {
this.balance -= amt;
target.balance += amt;
}
}
}
}
}
关于这种现象,我们还可以借助资源分配图来可视化锁的占用情况(资源分配图是个有向图,它可以描述资源和线程的状态)。其中,资源用方形节点表示,线程用圆形节点表示;资源中的点指向线程的边表示线程已经获得该资源,线程指向资源的边则表示线程请求资源,但尚未得到。转账发生死锁时的资源分配图就如下图所示,一个“各据山头死等”的尴尬局面。
转账发生死锁时的资源分配图
如何预防死锁
并发程序一旦死锁,一般没有特别好的方法,很多时候我们只能重启应用。因此,解决死锁问题最好的办法还是规避死锁。
那如何避免死锁呢?要避免死锁就需要分析死锁发生的条件,有个叫 Coffman 的牛人早就总结过了,只有以下这四个条件都发生时才会出现死锁:
互斥,共享资源 X 和 Y 只能被一个线程占用;
占有且等待,线程 T1 已经取得共享资源 X,在等待共享资源 Y 的时候,不释放共享资源 X;
不可抢占,其他线程不能强行抢占线程 T1 占有的资源;
循环等待,线程 T1 等待线程 T2 占有的资源,线程 T2 等待线程 T1 占有的资源,就是循环等待。
反过来分析,也就是说只要我们破坏其中一个,就可以成功避免死锁的发生。
其中,互斥这个条件我们没有办法破坏,因为我们用锁为的就是互斥。不过其他三个条件都是有办法破坏掉的,到底如何做呢?
对于“占用且等待”这个条件,我们可以一次性申请所有的资源,这样就不存在等待了。
对于“不可抢占”这个条件,占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源,这样不可抢占这个条件就破坏掉了。
对于“循环等待”这个条件,可以靠按序申请资源来预防。所谓按序申请,是指资源是有线性顺序的,申请的时候可以先申请资源序号小的,再申请资源序号大的,这样线性化后自然就不存在循环了。
我们已经从理论上解决了如何预防死锁,那具体如何体现在代码上呢?下面我们就来尝试用代码实践一下这些理论。
1. 破坏占用且等待条件
从理论上讲,要破坏这个条件,可以一次性申请所有资源。在现实世界里,就拿前面我们提到的转账操作来讲,它需要的资源有两个,一个是转出账户,另一个是转入账户,当这两个账户同时被申请时,我们该怎么解决这个问题呢?
可以增加一个账本管理员,然后只允许账本管理员从文件架上拿账本,也就是说柜员不能直接在文件架上拿账本,必须通过账本管理员才能拿到想要的账本。例如,张三同时申请账本 A 和 B,账本管理员如果发现文件架上只有账本 A,这个时候账本管理员是不会把账本 A 拿下来给张三的,只有账本 A 和 B 都在的时候才会给张三。这样就保证了“一次性申请所有资源”。
通过账本管理员拿账本
对应到编程领域,“同时申请”这个操作是一个临界区,我们也需要一个角色(Java 里面的类)来管理这个临界区,我们就把这个角色定为 Allocator。它有两个重要功能,分别是:同时申请资源 apply() 和同时释放资源 free()。账户 Account 类里面持有一个 Allocator 的单例(必须是单例,只能由一个人来分配资源)。当账户 Account 在执行转账操作的时候,首先向 Allocator 同时申请转出账户和转入账户这两个资源,成功后再锁定这两个资源;当转账操作执行完,释放锁之后,我们需通知 Allocator 同时释放转出账户和转入账户这两个资源。具体的代码实现如下。
class Allocator {
private List<Object> als =
new ArrayList<>();
// 一次性申请所有资源
synchronized boolean apply(
Object from, Object to){
if(als.contains(from) ||
als.contains(to)){
return false;
} else {
als.add(from);
als.add(to);
}
return true;
}
// 归还资源
synchronized void free(
Object from, Object to){
als.remove(from);
als.remove(to);
}
}
class Account {
// actr 应该为单例
private Allocator actr;
private int balance;
// 转账
void transfer(Account target, int amt){
// 一次性申请转出账户和转入账户,直到成功
while(!actr.apply(this, target))
;
try{
// 锁定转出账户
synchronized(this){
// 锁定转入账户
synchronized(target){
if (this.balance > amt){
this.balance -= amt;
target.balance += amt;
}
}
}
} finally {
actr.free(this, target)
}
}
}
2. 破坏不可抢占条件
破坏不可抢占条件看上去很简单,核心是要能够主动释放它占有的资源,这一点 synchronized 是做不到的。原因是 synchronized 申请资源的时候,如果申请不到,线程直接进入阻塞状态了,而线程进入阻塞状态,啥都干不了,也释放不了线程已经占有的资源。
你可能会质疑,“Java 作为排行榜第一的语言,这都解决不了?”你的怀疑很有道理,Java 在语言层次确实没有解决这个问题,不过在 SDK 层面还是解决了的,java.util.concurrent 这个包下面提供的 Lock 是可以轻松解决这个问题的。关于这个话题,咱们后面会详细讲。
3. 破坏循环等待条件
破坏这个条件,需要对资源进行排序,然后按序申请资源。这个实现非常简单,我们假设每个账户都有不同的属性 id,这个 id 可以作为排序字段,申请的时候,我们可以按照从小到大的顺序来申请。比如下面代码中,①~⑥处的代码对转出账户(this)和转入账户(target)排序,然后按照序号从小到大的顺序锁定账户。这样就不存在“循环”等待了。
class Account {
private int id;
private int balance;
// 转账
void transfer(Account target, int amt){
Account left = this ①
Account right = target; ②
if (this.id > target.id) { ③
left = target; ④
right = this; ⑤
} ⑥
// 锁定序号小的账户
synchronized(left){
// 锁定序号大的账户
synchronized(right){
if (this.balance > amt){
this.balance -= amt;
target.balance += amt;
}
}
}
}
}
如果在获取多个锁的时候操作耗时非常短,而且并发冲突量也不大时,这个方案还挺不错的,因为这种场景下,循环上几次或者几十次就能一次性获取转出账户和转入账户了。但是如果 apply() 操作耗时长,或者并发冲突量大的时候,循环等待这种方案就不适用了,因为在这种场景下,可能要循环上万次才能获取到锁,太消耗 CPU 了。
其实在这种场景下,最好的方案应该是:如果线程要求的条件(转出账本和转入账本同在文件架上)不满足,则线程阻塞自己,进入等待状态;当线程要求的条件(转出账本和转入账本同在文件架上)满足后,通知等待的线程重新执行。其中,使用线程阻塞的方式就能避免循环等待消耗 CPU 的问题。
那 Java 语言是否支持这种等待 - 通知机制呢?答案是:一定支持(毕竟占据排行榜第一那么久)。下面我们就来看看 Java 语言是如何支持等待 - 通知机制的。
用 synchronized 实现等待 - 通知机制
在 Java 语言里,等待 - 通知机制可以有多种实现方式,比如 Java 语言内置的 synchronized 配合 wait()、notify()、notifyAll() 这三个方法就能轻松实现。
如何用 synchronized 实现互斥锁,你应该已经很熟悉了。在下面这个图里,左边有一个等待队列,同一时刻,只允许一个线程进入 synchronized 保护的临界区(这个临界区可以看作大夫的诊室),当有一个线程进入临界区后,其他线程就只能进入图中左边的等待队列里等待(相当于患者分诊等待)。这个等待队列和互斥锁是一对一的关系,每个互斥锁都有自己独立的等待队列。
wait() 操作工作原理图
在并发程序中,当一个线程进入临界区后,由于某些条件不满足,需要进入等待状态,Java 对象的 wait() 方法就能够满足这种需求。如上图所示,当调用 wait() 方法后,当前线程就会被阻塞,并且进入到右边的等待队列中,这个等待队列也是互斥锁的等待队列。 线程在进入等待队列的同时,会释放持有的互斥锁,线程释放锁后,其他线程就有机会获得锁,并进入临界区了。
notify() 是会随机地通知等待队列中的一个线程,而 notifyAll() 会通知等待队列中的所有线程。从感觉上来讲,应该是 notify() 更好一些,因为即便通知所有线程,也只有一个线程能够进入临界区。但那所谓的感觉往往都蕴藏着风险,实际上使用 notify() 也很有风险,它的风险在于可能导致某些线程永远不会被通知到。
具体参考下面的代码:
class Allocator {
private List<Object> als;
// 一次性申请所有资源
synchronized void apply(
Object from, Object to){
// 经典写法
while(als.contains(from) ||
als.contains(to)){
try{
wait();
}catch(Exception e){
}
}
als.add(from);
als.add(to);
}
// 归还资源
synchronized void free(
Object from, Object to){
als.remove(from);
als.remove(to);
notifyAll();
}
}
在上面的代码中,我用的是 notifyAll() 来实现通知机制,为什么不使用 notify() 呢?这二者是有区别的,notify() 是会随机地通知等待队列中的一个线程,而 notifyAll() 会通知等待队列中的所有线程。从感觉上来讲,应该是 notify() 更好一些,因为即便通知所有线程,也只有一个线程能够进入临界区。但那所谓的感觉往往都蕴藏着风险,实际上使用 notify() 也很有风险,它的风险在于可能导致某些线程永远不会被通知到。
假设我们有资源 A、B、C、D,线程 1 申请到了 AB,线程 2 申请到了 CD,此时线程 3 申请 AB,会进入等待队列(AB 分配给线程 1,线程 3 要求的条件不满足),线程 4 申请 CD 也会进入等待队列。我们再假设之后线程 1 归还了资源 AB,如果使用 notify() 来通知等待队列中的线程,有可能被通知的是线程 4,但线程 4 申请的是 CD,所以此时线程 4 还是会继续等待,而真正该唤醒的线程 3 就再也没有机会被唤醒了。
所以除非经过深思熟虑,否则尽量使用 notifyAll()。
总结
当我们在编程世界里遇到问题时,应不局限于当下,可以换个思路,向现实世界要答案,利用现实世界的模型来构思解决方案,这样往往能够让我们的方案更容易理解,也更能够看清楚问题的本质。
但是现实世界的模型有些细节往往会被我们忽视。因为在现实世界里,人太智能了,以致有些细节实在是显得太不重要了。在转账的模型中,我们为什么会忽视死锁问题呢?原因主要是在现实世界,我们会交流,并且会很智能地交流。而编程世界里,两个线程是不会智能地交流的。所以在利用现实模型建模的时候,我们还要仔细对比现实世界和编程世界里的各角色之间的差异。
我们今天这一篇文章主要讲了用细粒度锁来锁定多个资源时,要注意死锁的问题。这个就需要你能把它强化为一个思维定势,遇到这种场景,马上想到可能存在死锁问题。当你知道风险之后,才有机会谈如何预防和避免,因此,识别出风险很重要。
预防死锁主要是破坏三个条件中的一个,有了这个思路后,实现就简单了。但仍需注意的是,有时候预防死锁成本也是很高的。例如上面转账那个例子,我们破坏占用且等待条件的成本就比破坏循环等待条件的成本高,破坏占用且等待条件,我们也是锁了所有的账户,而且还是用了死循环 while(!actr.apply(this, target));
方法,不过好在 apply() 这个方法基本不耗时。 在转账这个例子中,破坏循环等待条件就是成本最低的一个方案。
所以我们在选择具体方案的时候,还需要评估一下操作成本,从中选择一个成本最低的方案。
相关文章
实例详解 Java 死锁与破解死锁的更多相关文章
- 实例详解Java中如何对方法进行调用
原文源自http://www.jb51.net/article/73827.htm 方法调用Java支持两种调用方法的方式,根据方法是否返回值来选择. 当程序调用一个方法时,程序的控制权交给了被调用的 ...
- Protocol Buffer技术详解(Java实例)
Protocol Buffer技术详解(Java实例) 该篇Blog和上一篇(C++实例)基本相同,只是面向于我们团队中的Java工程师,毕竟我们项目的前端部分是基于Android开发的,而且我们研发 ...
- java中List的用法和实例详解
java中List的用法和实例详解 List的用法List包括List接口以及List接口的所有实现类.因为List接口实现了Collection接口,所以List接口拥有Collection接口提供 ...
- Java中JSON字符串与java对象的互换实例详解
这篇文章主要介绍了在java中,JSON字符串与java对象的相互转换实例详解,非常不错,具有参考借鉴价值,需要的朋友可以参考下 在开发过程中,经常需要和别的系统交换数据,数据交换的格式有XML.JS ...
- 事件驱动模型实例详解(Java篇)
或许每个软件从业者都有从学习控制台应用程序到学习可视化编程的转变过程,控制台应用程序的优点在于可以方便的练习某个语言的语法和开发习惯(如.net和java),而可视化编程的学习又可以非常方便开发出各类 ...
- 我的书籍《深入解析Java编译器:源码剖析与实例详解》就要出版了
一个十足的技术迷,2013年毕业,做过ERP.游戏.计算广告,在大公司呆过,但终究不满足仅对技术的应用,在2018年末离开了公司,全职写了一本书<深入解析Java编译器:源码剖析与实例详解> ...
- java 流操作对文件的分割和合并的实例详解_java - JAVA
文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 java 流操作对文件的分割和合并的实例详解 学习文件的输入输出流,自己做一个小的示例,对文件进行分割和合并. 下面是代 ...
- Java中JSON字符串与java对象的互换实例详解(转)
http://www.jb51.net/article/90914.htm 在开发过程中,经常需要和别的系统交换数据,数据交换的格式有XML.JSON等,JSON作为一个轻量级的数据格式比xml效率要 ...
- java基础(十五)----- Java 最全异常详解 ——Java高级开发必须懂的
本文将详解java中的异常和异常处理机制 异常简介 什么是异常? 程序运行时,发生的不被期望的事件,它阻止了程序按照程序员的预期正常执行,这就是异常. Java异常的分类和类结构图 1.Java中的所 ...
随机推荐
- CUDA 入门(转)
CUDA(Compute Unified Device Architecture)的中文全称为计算统一设备架构.做图像视觉领域的同学多多少少都会接触到CUDA,毕竟要做性能速度优化,CUDA是个很重要 ...
- prometheus基本概念(思维导图)
参考文章: prometheus词汇表 prometheus的summary和histogram指标的简单理解
- WSL与gnome-desktop
WSL与gome-desktop 经过测试和检索 确定WSL1无法在gome-desktop实现GUI桌面 只能实现其中应用的现实,比如打开记事本在Xserver https://www.reddit ...
- 『德不孤』Pytest框架 — 3、Pytest的基础说明
目录 1.Pytest参数介绍 2.Pytest框架用例命名规则 3.Pytest Exit Code说明 4.pytest.ini全局配置文件 5.Pytest执行测试用例的顺序 1.Pytest参 ...
- HashMap和TreeMap的内部结构
一.HashMap 1.基于哈希表的 Map 接口的实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.(除了非同步和允许使用 null 之外,HashMap 类与 Hash ...
- 搭建服务器之www-向外提供视频服务by html5 video标签
搭建好www服务器,主要目的有两个一个是试验下,另一个是想给女朋友个惊喜,给她个带视频的网页,嘿嘿当前测试下相应功能. 1,采用html5的视频功能:bideo标签. 源码如下: <!docty ...
- SSM项目使用拦截器实现登录验证功能
SSM项目使用拦截器实现登录验证功能 登录接口实现 public User queryUser(String UserName, String Password,HttpServletRequest ...
- jetson-nano opencv基础使用
前言: jetson nano前一篇给大家介绍了学习的一些思路和资料,今天继续给大家分享一篇在jetson nano使用opencv的文章. OpenCV的全称是Open Source Compute ...
- Pytest单元测试框架生成HTML测试报告及优化
一.安装插件 要生成html类型的报告,需要使用pytest-html插件,可以在IDE中安装,也可以在命令行中安装.插件安装 的位置涉及到不同项目的使用,这里不再详述,想了解的可自行查询. IDE中 ...
- .NET6: 开发基于WPF的摩登三维工业软件
MS Office和VisualStudio一直引领着桌面应用的时尚潮流,大型的工业软件一般都会紧跟潮流,搭配着Ribbon和DockPanel风格的界面.本文将介绍WPF下两个轻量级的Ribbon和 ...