1111 Online Map (30 分)

Input our current position and a destination, an online map can recommend several paths. Now your job is to recommend two paths to your user: one is the shortest, and the other is the fastest. It is guaranteed that a path exists for any request.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (2≤N≤500), and M, being the total number of streets intersections on a map, and the number of streets, respectively. Then M lines follow, each describes a street in the format:

V1 V2 one-way length time

where V1 and V2 are the indices (from 0 to N−1) of the two ends of the street; one-way is 1 if the street is one-way from V1 to V2, or 0 if not; length is the length of the street; and time is the time taken to pass the street.

Finally a pair of source and destination is given.

Output Specification:

For each case, first print the shortest path from the source to the destination with distance D in the format:

Distance = D: source -> v1 -> ... -> destination

Then in the next line print the fastest path with total time T:

Time = T: source -> w1 -> ... -> destination

In case the shortest path is not unique, output the fastest one among the shortest paths, which is guaranteed to be unique. In case the fastest path is not unique, output the one that passes through the fewest intersections, which is guaranteed to be unique.

In case the shortest and the fastest paths are identical, print them in one line in the format:

Distance = D; Time = T: source -> u1 -> ... -> destination

Sample Input 1:

10 15
0 1 0 1 1
8 0 0 1 1
4 8 1 1 1
3 4 0 3 2
3 9 1 4 1
0 6 0 1 1
7 5 1 2 1
8 5 1 2 1
2 3 0 2 2
2 1 1 1 1
1 3 0 3 1
1 4 0 1 1
9 7 1 3 1
5 1 0 5 2
6 5 1 1 2
3 5

Sample Output 1:

Distance = 6: 3 -> 4 -> 8 -> 5
Time = 3: 3 -> 1 -> 5

Sample Input 2:

7 9
0 4 1 1 1
1 6 1 1 3
2 6 1 1 1
2 5 1 2 2
3 0 0 1 1
3 1 1 1 3
3 2 1 1 2
4 5 0 2 2
6 5 1 1 2
3 5

Sample Output 2:

Distance = 3; Time = 4: 3 -> 2 -> 5

分析:dijkstra + dfs,先找出最短路径,再dfs出最短路径,根据题目中tie的处理方式选择出最终的路径

#include<iostream>
#include<cstdio>
#include<vector>
#include<string>
#include<unordered_map>
#include<set>
#include<queue>
#include<algorithm>
#include<cmath>
using namespace std;
const int nmax = 510, inf = (1 << 31) - 1;
struct node{
int v, len, t;
};
vector<node>G[nmax];
int d[nmax], td[nmax], t[nmax], preV[nmax];
vector<int>pret[nmax];
bool visv[nmax] = {false}, vist[nmax] = {false};
void dij(int s, int n){
fill(d, d + nmax, inf);
fill(td, td + nmax, inf);
fill(t, t + nmax, inf);
d[s] = 0, td[s] = 0, t[s] = 0;
for(int i = 0; i < n; ++i){
int u = -1, MIN = inf;
for(int j = 0; j < n; ++j){
if(visv[j] == false && d[j] < MIN){
MIN = d[j];
u = j;
}
}
if(u == -1)return;
visv[u] = true;
for(int j = 0; j < G[u].size(); ++j){
int v = G[u][j].v;
if(visv[v] == false){
if(d[u] + G[u][j].len < d[v]){
d[v] = d[u] + G[u][j].len;
td[v] = td[u] + G[u][j].t;
preV[v] = u;
}else if(d[u] + G[u][j].len == d[v] && td[u] + G[u][j].t < td[v]){
td[v] = td[u] + G[u][j].t;
preV[v] = u;
}
}
}
u = -1, MIN = inf;
for(int j = 0; j < n; ++j){
if(vist[j] == false && t[j] < MIN){
MIN = t[j];
u = j;
}
}
if(u == -1)return;
vist[u] = true;
for(int j = 0; j < G[u].size(); ++j){
int v = G[u][j].v;
if(vist[v] == false){
if(t[u] + G[u][j].t < t[v]){
t[v] = t[u] + G[u][j].t;
pret[v].clear();
pret[v].push_back(u);
}else if(t[u] + G[u][j].t == t[v]){
pret[v].push_back(u);
}
}
}
}
}
vector<int>pathv;
void dfs1(int s, int e){
pathv.push_back(s);
if(s == e)return;
dfs1(preV[s], e);
}
vector<int>patht, temp;
int intermin = inf;
void dfs2(int s, int e){
temp.push_back(s);
if(s == e){
if(temp.size() < intermin){
intermin = temp.size();
patht = temp;
}
return;
} for(int i = 0; i < pret[s].size(); ++i){
dfs2(pret[s][i], e);
temp.pop_back();
}
}
void Print(vector<int> &path){
for(int i = path.size() - 1; i >= 0; --i){
printf("%d", path[i]);
if(i > 0)printf(" -> ");
else printf("\n");
}
}
int main(){
#ifdef ONLINE_JUDGE
#else
freopen("input.txt", "r", stdin);
#endif // ONLINE_JUDGE
int n, m;
scanf("%d%d", &n, &m);
for(int i = 0; i < m; ++i){
int v1, v2, tag, len, t;
scanf("%d%d%d%d%d", &v1, &v2, &tag, &len, &t);
G[v1].push_back({v2, len, t});
if(tag == 0)G[v2].push_back({v1, len, t});
}
int s, e;
scanf("%d%d", &s, &e);
dij(s, n);
dfs1(e, s);
dfs2(e, s);
bool flag = false;
if(patht.size() == pathv.size()){
int i = 0;
while(i < patht.size() && pathv[i] == patht[i])i++;
if(i == patht.size())flag = true;
}
printf("Distance = %d", d[e]);
if(flag == false){
printf(": ");
Print(pathv);
}else{
printf("; ");
}
printf("Time = %d: ", t[e]);
Print(patht);
return 0;
}

【刷题-PAT】A1111 Online Map (30 分)的更多相关文章

  1. 牛客网刷题(纯java题型 1~30题)

    牛客网刷题(纯java题型 1~30题) 应该是先extend,然后implement class test extends A implements B { public static void m ...

  2. 【刷题-PAT】A1135 Is It A Red-Black Tree (30 分)

    1135 Is It A Red-Black Tree (30 分) There is a kind of balanced binary search tree named red-black tr ...

  3. 【刷题-PAT】A1119 Pre- and Post-order Traversals (30 分)

    1119 Pre- and Post-order Traversals (30 分) Suppose that all the keys in a binary tree are distinct p ...

  4. 【刷题-PAT】A1095 Cars on Campus (30 分)

    1095 Cars on Campus (30 分) Zhejiang University has 8 campuses and a lot of gates. From each gate we ...

  5. PAT-1111 Online Map (30分) 最短路+dfs

    明天就要考PAT,为了应付期末已经好久没有刷题了啊啊啊啊,今天开了一道最短路,状态不是很好 1.没有读清题目要求,或者说没有读完题目,明天一定要注意 2.vis初始化的时候从1初始化到n,应该从0开始 ...

  6. PAT 1004 Counting Leaves (30分)

    1004 Counting Leaves (30分) A family hierarchy is usually presented by a pedigree tree. Your job is t ...

  7. [PAT] 1147 Heaps(30 分)

    1147 Heaps(30 分) In computer science, a heap is a specialized tree-based data structure that satisfi ...

  8. PAT 甲级 1147 Heaps (30 分) (层序遍历,如何建树,后序输出,还有更简单的方法~)

    1147 Heaps (30 分)   In computer science, a heap is a specialized tree-based data structure that sati ...

  9. PAT 甲级1057 Stack (30 分)(不会,树状数组+二分)*****

    1057 Stack (30 分)   Stack is one of the most fundamental data structures, which is based on the prin ...

随机推荐

  1. CF1111A Superhero Transformation 题解

    Content 有两个字符串 \(s,t\).规定元音字母只能够变换成元音字母,辅音字母只能够变换成辅音字母.试问 \(s\) 能否经过若干次变换得到 \(t\). 数据范围:\(1\leqslant ...

  2. ymal文档格式 处理

    Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块. 参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation

  3. react 实现tab切换 三角形筛选样式

    ​ ​ 这次使用的是react的class 类组件 import React, { Component } from 'react' import { LeftOutline, SearchOutli ...

  4. 基于 SoC 的卷积神经网络车牌识别系统设计(0)摘要

    ​NOTES:现如今,芯片行业无比火热啊,无论是前景还是钱景,国家芯片战略的发布,公司四五十万的年薪,着实令人非常的向往,为了支持芯片设计者,集成了工作.科研.竞赛于一体的<基于 SoC 的卷积 ...

  5. c++基础之虚函数表指针和虚函数表创建时机

    虚函数表指针 虚函数表指针随对象走,它发生在对象运行期,当对象创建的时候,虚函数表表指针位于该对象所在内存的最前面. 使用虚函数时,虚函数表指针指向虚函数表中的函数地址即可实现多态. 虚函数表 虚函数 ...

  6. 1382 - The Queue

    1382 - The Queue   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB On som ...

  7. Bristol大学密码学博士生的五十二个知识点

    Bristol大学密码学博士生的五十二个知识点 这个系列,是Bristol大学的密码安全工作组为密码学和信息安全相关的博士准备了52个基本知识点. 原地址:http://bristolcrypto.b ...

  8. Deepin20系统安装Nvidia驱动

    Deepin20系统安装Nvidia驱动 系统设备配置信息如下: 电脑型号:华硕天选air[ASUS-FX516P] 显卡型号:RTX 3070 移动版独显 处理器型号: 11th Gen Intel ...

  9. CS5211|CS5211参数|eDP转LVDS转换器芯片

    CS5211概述 CS5211是一个eDP到LVDS转换器,配置灵活,适用于低成本显示系统.CS5211与eDP 1.2兼容,支持1车道和2车道模式,每车道速度为1.62Gbps和2.7Gbps.CS ...

  10. x86-1-32位x86 处理器编程架构

    x86(32位)-1-32位x86 处理器编程架构 Intel 32 位处理器架构简称IA-32(Intel Architecture,32-bit) x86是指intel的86系列的CPU统称,比如 ...