1.关于

  • 1.1 基于原版sigslot做了部分修改。原版的信号支持最多支持8个参数,改进后,最多支持1个参数,这样肯定不能满足日常需求,但是,我们可以将信号的一个参数改为类型指针,比如信号定义时的模板传递一个结构体,这样,就可以很方便的传递多于1个的参数了,将参数做了封装放入到结构体,槽函数直接读取传过来的结构体内容。 很方便的对其做了扩展。

    简单说: 去冗余代码。
  • 1.2 改进版中增加了部分注释

    一份良好的代码需要良好的注释。可能是我水平太低,哈哈,习惯了。
  • 1.3 仅仅去除了冗余代码,并没有改变其用法,之前怎么用的,现在还是怎么用。

2.改进版

源码

//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
// the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
// (see also the full documentation at http://sigslot.sourceforge.net/)
//
// #define switches
// SIGSLOT_PURE_ISO - Define this to force ISO C++ compliance. This also disables
// all of the thread safety support on platforms where it is
// available.
//
// SIGSLOT_USE_POSIX_THREADS - Force use of Posix threads when using a C++ compiler other than
// gcc on a platform that supports Posix threads. (When using gcc,
// this is the default - use SIGSLOT_PURE_ISO to disable this if
// necessary)
//
// SIGSLOT_DEFAULT_MT_POLICY - Where thread support is enabled, this defaults to multi_threaded_global.
// Otherwise, the default is single_threaded. #define this yourself to
// override the default. In pure ISO mode, anything other than
// single_threaded will cause a compiler error.
//
// PLATFORM NOTES
//
// Win32 - On Win32, the WIN32 symbol must be #defined. Most mainstream
// compilers do this by default, but you may need to define it
// yourself if your build environment is less standard. This causes
// the Win32 thread support to be compiled in and used automatically.
//
// Unix/Linux/BSD, etc. - If you're using gcc, it is assumed that you have Posix threads
// available, so they are used automatically. You can override this
// (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
// something other than gcc but still want to use Posix threads, you
// need to #define SIGSLOT_USE_POSIX_THREADS.
//
// ISO C++ - If none of the supported platforms are detected, or if
// SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
// along with any code that might cause a pure ISO C++ environment to
// complain. Before you ask, gcc -ansi -pedantic won't compile this
// library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
// errors that aren't really there. If you feel like investigating this,
// please contact the author.
//
//
// THREADING MODES
//
// single_threaded - Your program is assumed to be single threaded from the point of view
// of signal/slot usage (i.e. all objects using signals and slots are
// created and destroyed from a single thread). Behaviour if objects are
// destroyed concurrently is undefined (i.e. you'll get the occasional
// segmentation fault/memory exception).
//
// multi_threaded_global - Your program is assumed to be multi threaded. Objects using signals and
// slots can be safely created and destroyed from any thread, even when
// connections exist. In multi_threaded_global mode, this is achieved by a
// single global mutex (actually a critical section on Windows because they
// are faster). This option uses less OS resources, but results in more
// opportunities for contention, possibly resulting in more context switches
// than are strictly necessary.
//
// multi_threaded_local - Behaviour in this mode is essentially the same as multi_threaded_global,
// except that each signal, and each object that inherits has_slots, all
// have their own mutex/critical section. In practice, this means that
// mutex collisions (and hence context switches) only happen if they are
// absolutely essential. However, on some platforms, creating a lot of
// mutexes can slow down the whole OS, so use this option with care.
//
// USING THE LIBRARY
//
// See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur. #ifndef _SIGSLOT_H__
#define _SIGSLOT_H__ #include <list>
#include <set>
#include <stdlib.h> // On our copy of sigslot.h, we set single threading as default.
#define SIGSLOT_DEFAULT_MT_POLICY single_threaded // 强制设定其为ISO C++编译器,并关闭所有的操作系统提供的线程安全的支持。
#if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
# define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
# define _SIGSLOT_HAS_WIN32_THREADS
# if !defined(WIN32_LEAN_AND_MEAN)
# define WIN32_LEAN_AND_MEAN
# endif
# include <windows.h> // 当使用gcc以外的编译器,而编译器支持Posix线程时,强制使用Posix线程支持。
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
# define _SIGSLOT_HAS_POSIX_THREADS
# include <pthread.h>
#else
# define _SIGSLOT_SINGLE_THREADED
#endif // 当启用多线程支持时,默认项为全局多线程(multi_threaded_global)。否则默认项为单线程
#ifndef SIGSLOT_DEFAULT_MT_POLICY
# ifdef _SIGSLOT_SINGLE_THREADED
# define SIGSLOT_DEFAULT_MT_POLICY single_threaded
# else
# define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
# endif
#endif // TODO: change this namespace to talk_base?
namespace sigslot
{ class single_threaded
{
public:
single_threaded()
{
;
} virtual ~single_threaded()
{
;
} virtual void lock()
{
;
} virtual void unlock()
{
;
}
}; #ifdef _SIGSLOT_HAS_WIN32_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
static bool isinitialised = false; if (!isinitialised)
{
InitializeCriticalSection(get_critsec());
isinitialised = true;
}
} multi_threaded_global(const multi_threaded_global&)
{
;
} virtual ~multi_threaded_global()
{
;
} virtual void lock()
{
EnterCriticalSection(get_critsec());
} virtual void unlock()
{
LeaveCriticalSection(get_critsec());
} private:
CRITICAL_SECTION* get_critsec()
{
static CRITICAL_SECTION g_critsec;
return &g_critsec;
}
}; class multi_threaded_local
{
public:
multi_threaded_local()
{
InitializeCriticalSection(&m_critsec);
} multi_threaded_local(const multi_threaded_local&)
{
InitializeCriticalSection(&m_critsec);
} virtual ~multi_threaded_local()
{
DeleteCriticalSection(&m_critsec);
} virtual void lock()
{
EnterCriticalSection(&m_critsec);
} virtual void unlock()
{
LeaveCriticalSection(&m_critsec);
} private:
CRITICAL_SECTION m_critsec;
};
#endif // _SIGSLOT_HAS_WIN32_THREADS #ifdef _SIGSLOT_HAS_POSIX_THREADS
// The multi threading policies only get compiled in if they are enabled.
class multi_threaded_global
{
public:
multi_threaded_global()
{
pthread_mutex_init(get_mutex(), NULL);
} multi_threaded_global(const multi_threaded_global&)
{
;
} virtual ~multi_threaded_global()
{
;
} virtual void lock()
{
pthread_mutex_lock(get_mutex());
} virtual void unlock()
{
pthread_mutex_unlock(get_mutex());
} private:
pthread_mutex_t* get_mutex()
{
static pthread_mutex_t g_mutex;
return &g_mutex;
}
}; class multi_threaded_local
{
public:
multi_threaded_local()
{
pthread_mutex_init(&m_mutex, NULL);
} multi_threaded_local(const multi_threaded_local&)
{
pthread_mutex_init(&m_mutex, NULL);
} virtual ~multi_threaded_local()
{
pthread_mutex_destroy(&m_mutex);
} virtual void lock()
{
pthread_mutex_lock(&m_mutex);
} virtual void unlock()
{
pthread_mutex_unlock(&m_mutex);
} private:
pthread_mutex_t m_mutex;
};
#endif // _SIGSLOT_HAS_POSIX_THREADS /**
* @brief: 锁对象:
lock_block模板类,最终根据实例化的模板类使用相应的线程模型和同步对象,
只需要将该类实例化到需要的位置即实现了线程同步功能,这是比较规范并简单有效的方法。
mt_policy被指定为SIGSLOT_DEFAULT_MT_POLICY宏,同时也作为一个强制指定为单线程模型的开关。
*/
template<class mt_policy>
class lock_block
{
public:
mt_policy *m_mutex; lock_block(mt_policy *mtx)
: m_mutex(mtx)
{
m_mutex->lock();
} ~lock_block()
{
m_mutex->unlock();
}
}; //---------------------------------------------------------------------------------------- class has_slots_interface;
/**
* @brief: 连接对象接口类
*/
template<class mt_policy>
class _connection_base0
{
public:
virtual ~_connection_base0() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit() = 0;
virtual _connection_base0* clone() = 0;
virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
}; /**
* @brief: 连接对象 _connection0 ... _connection8
_connection0<dest_type,mt_policy>...
_connection8<dest_type,arg1_type...arg8_type,mt_policy>
是接口:
_connection_base0<mt_policy> ...
_connection_base8<arg1_type,...arg8_type,mt_policy>的实现类,其中: clone():
使用默认拷贝构造函数返回一个新的_connection_baseN对象指针。 duplicate(sigslot::has_slots<mt_policy> *pnewdest):
返回一个新的目标对象为pnewdest的_connection_baseN对象指针。 emit(arg0_type a0..argN_type aN):
触发_connection_baseN中目标对象中指定的函数指针。 getdest(void)const:
返回目标对象指针。
*/
template<class arg1_type, class mt_policy>
class _connection_base1
{
public:
virtual ~_connection_base1() {}
virtual has_slots_interface* getdest() const = 0;
virtual void emit(arg1_type) = 0;
virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
}; //-------------------------------------------------------------------------------------------------------------- /**
* @brief: 信号接口
*/
class _signal_base_interface
{
public:
virtual void slot_disconnect(has_slots_interface* pslot) = 0;
virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
}; /**
* @brief: 扩展信号接口类
*/
template<class mt_policy>
class _signal_base : public _signal_base_interface, public mt_policy
{
}; /**
* @brief:信号槽接口类,
*/
class has_slots_interface
{
public:
has_slots_interface()
{
;
} virtual void signal_connect(_signal_base_interface* sender) = 0; virtual void signal_disconnect(_signal_base_interface* sender) = 0; virtual ~has_slots_interface()
{
} virtual void disconnect_all() = 0;
}; /**
* @brief: 扩展信号槽接口
*/
template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class has_slots : public has_slots_interface, public mt_policy
{
private:
typedef std::set<_signal_base_interface*> sender_set;
typedef sender_set::const_iterator const_iterator; public:
has_slots()
{
;
} has_slots(const has_slots& hs)
{
lock_block<mt_policy> lock(this);
const_iterator it = hs.m_senders.begin();
const_iterator itEnd = hs.m_senders.end(); while (it != itEnd)
{
(*it)->slot_duplicate(&hs, this);
m_senders.insert(*it);
++it;
}
} void signal_connect(_signal_base_interface* sender)
{
lock_block<mt_policy> lock(this);
m_senders.insert(sender);
} void signal_disconnect(_signal_base_interface* sender)
{
lock_block<mt_policy> lock(this);
m_senders.erase(sender);
} virtual ~has_slots()
{
disconnect_all();
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
const_iterator it = m_senders.begin();
const_iterator itEnd = m_senders.end(); while (it != itEnd)
{
(*it)->slot_disconnect(this);
++it;
} m_senders.erase(m_senders.begin(), m_senders.end());
} private:
sender_set m_senders;
}; /**
* @brief: 信号对象
*/
template<class mt_policy>
class _signal_base0 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base0<mt_policy> *> connections_list; _signal_base0()
{
;
} _signal_base0(const _signal_base0& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} ~_signal_base0()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} protected:
connections_list m_connected_slots;
}; /**
* @brief: 信号对象 Signal0 ... Signal8 以带一个参数的信号对象为例:signal1<arg1_type,mt_policy>的emit(arg1_type a1)
与 重载运算符operator ()(arg1_type a1)功能是一致的。
都是遍历父类成员m_connected_slots中的_connection_base1<arg1_type,
mt_policy>指针元素,逐一的调用_connection_base1中的emit(a1)函数最终使目标函数被调用。 函数connect()生成模板参数的目标对象和目标函数指针,并将该新连接加入到已连接的列表m_connected_slots中。
最后使用has_slots的signal_connect函数,将signal1信号对象加入到has_slots的m_senders列表中
*/
template<class arg1_type, class mt_policy>
class _signal_base1 : public _signal_base<mt_policy>
{
public:
typedef std::list<_connection_base1<arg1_type, mt_policy> *> connections_list; _signal_base1()
{
;
} _signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
: _signal_base<mt_policy>(s)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = s.m_connected_slots.begin();
typename connections_list::const_iterator itEnd = s.m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_connect(this);
m_connected_slots.push_back((*it)->clone()); ++it;
}
} void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == oldtarget)
{
m_connected_slots.push_back((*it)->duplicate(newtarget));
} ++it;
}
} ~_signal_base1()
{
disconnect_all();
} bool is_empty()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
return it == itEnd;
} void disconnect_all()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
(*it)->getdest()->signal_disconnect(this);
delete *it; ++it;
} m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
} #ifdef _DEBUG
bool connected(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end();
while (it != itEnd)
{
itNext = it;
++itNext;
if ((*it)->getdest() == pclass)
return true;
it = itNext;
}
return false;
}
#endif void disconnect(has_slots_interface* pclass)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
if ((*it)->getdest() == pclass)
{
delete *it;
m_connected_slots.erase(it);
pclass->signal_disconnect(this);
return;
} ++it;
}
} void slot_disconnect(has_slots_interface* pslot)
{
lock_block<mt_policy> lock(this);
typename connections_list::iterator it = m_connected_slots.begin();
typename connections_list::iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
typename connections_list::iterator itNext = it;
++itNext; if ((*it)->getdest() == pslot)
{
delete *it;
m_connected_slots.erase(it);
} it = itNext;
}
} protected:
connections_list m_connected_slots;
}; /**
* @brief: _connection0 ... _connection8
_connection0<dest_type,mt_policy>...
_connection8<dest_type,arg1_type...arg8_type,mt_policy>
是接口:
_connection_base0<mt_policy> ...
_connection_base8<arg1_type,...arg8_type,mt_policy>的实现类,其中: clone():
使用默认拷贝构造函数返回一个新的_connection_baseN对象指针。 duplicate(sigslot::has_slots<mt_policy> *pnewdest):
返回一个新的目标对象为pnewdest的_connection_baseN对象指针。 emit(arg0_type a0..argN_type aN):
触发_connection_baseN中目标对象中指定的函数指针。 getdest(void)const:
返回目标对象指针。
*/
template<class dest_type, class mt_policy>
class _connection0 : public _connection_base0<mt_policy>
{
public:
_connection0()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection0(dest_type* pobject, void (dest_type::*pmemfun)())
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection0()
{
} virtual _connection_base0<mt_policy>* clone()
{
return new _connection0<dest_type, mt_policy>(*this);
} virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit()
{
(m_pobject->*m_pmemfun)();
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)();
}; /**
* @brief: _connection0 ... _connection8
_connection0<dest_type,mt_policy>...
_connection8<dest_type,arg1_type...arg8_type,mt_policy>
是接口:
_connection_base0<mt_policy> ...
_connection_base8<arg1_type,...arg8_type,mt_policy>的实现类,其中: clone():
使用默认拷贝构造函数返回一个新的_connection_baseN对象指针。 duplicate(sigslot::has_slots<mt_policy> *pnewdest):
返回一个新的目标对象为pnewdest的_connection_baseN对象指针。 emit(arg0_type a0..argN_type aN):
触发_connection_baseN中目标对象中指定的函数指针。 getdest(void)const:
返回目标对象指针。
*/
template<class dest_type, class arg1_type, class mt_policy>
class _connection1 : public _connection_base1<arg1_type, mt_policy>
{
public:
_connection1()
{
m_pobject = NULL;
m_pmemfun = NULL;
} _connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
{
m_pobject = pobject;
m_pmemfun = pmemfun;
} virtual ~_connection1()
{
} virtual _connection_base1<arg1_type, mt_policy>* clone()
{
return new _connection1<dest_type, arg1_type, mt_policy>(*this);
} virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
{
return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
} virtual void emit(arg1_type a1)
{
(m_pobject->*m_pmemfun)(a1);
} virtual has_slots_interface* getdest() const
{
return m_pobject;
} private:
dest_type* m_pobject;
void (dest_type::* m_pmemfun)(arg1_type);
}; /**
* @brief: 信号对象
以带一个参数的信号对象为例:signal1<arg1_type,mt_policy>的emit(arg1_type a1)
与 重载运算符operator ()(arg1_type a1)功能是一致的。
都是遍历父类成员m_connected_slots中的_connection_base1<arg1_type, mt_policy>指针元素,
逐一的调用_connection_base1中的emit(a1)函数最终使目标函数被调用。 函数connect()生成模板参数的目标对象和目标函数指针,
并将该新连接加入到已连接的列表m_connected_slots中。
最后使用has_slots的signal_connect函数,将signal1信号对象加入到has_slots的m_senders列表中。
*/
template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal0 : public _signal_base0<mt_policy>
{
public:
typedef _signal_base0<mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal0()
{
;
} signal0(const signal0<mt_policy>& s)
: _signal_base0<mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)())
{
lock_block<mt_policy> lock(this);
_connection0<desttype, mt_policy>* conn =
new _connection0<desttype, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(); it = itNext;
}
} void operator()()
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(); it = itNext;
}
}
}; /**
* @brief: 信号对象
以带一个参数的信号对象为例:signal1<arg1_type,mt_policy>的emit(arg1_type a1)
与 重载运算符operator ()(arg1_type a1)功能是一致的。
都是遍历父类成员m_connected_slots中的_connection_base1<arg1_type, mt_policy>指针元素,
逐一的调用_connection_base1中的emit(a1)函数最终使目标函数被调用。 函数connect()生成模板参数的目标对象和目标函数指针,
并将该新连接加入到已连接的列表m_connected_slots中。
最后使用has_slots的signal_connect函数,将signal1信号对象加入到has_slots的m_senders列表中。
*/
template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class signal1 : public _signal_base1<arg1_type, mt_policy>
{
public:
typedef _signal_base1<arg1_type, mt_policy> base;
typedef typename base::connections_list connections_list;
using base::m_connected_slots; signal1()
{
;
} signal1(const signal1<arg1_type, mt_policy>& s)
: _signal_base1<arg1_type, mt_policy>(s)
{
;
} template<class desttype>
void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
{
lock_block<mt_policy> lock(this);
_connection1<desttype, arg1_type, mt_policy>* conn =
new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
m_connected_slots.push_back(conn);
pclass->signal_connect(this);
} void emit(arg1_type a1)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1); it = itNext;
}
} void operator()(arg1_type a1)
{
lock_block<mt_policy> lock(this);
typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
typename connections_list::const_iterator itEnd = m_connected_slots.end(); while (it != itEnd)
{
itNext = it;
++itNext; (*it)->emit(a1); it = itNext;
}
} }; // end class }; // namespace sigslot #endif // _SIGSLOT_H__s

sigslot之简化版的更多相关文章

  1. C++消息框架-基于sigslot

    目录 一.简介 二.消息 三.发送者 1.发送消息函数 2.新增一个接收者函数 3.移除一个接收者函数 四.接收者 五.功能测试 1.消息接收类 2.测试代码 3.测试结果 六.源码 一.简介 上一篇 ...

  2. 机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析

    SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM ...

  3. coreDate 简化版

    建表: 自动生成: 代码: // // RootViewController.m // coreDate 简化版 #import "RootViewController.h" #i ...

  4. 学习OpenCV——ORB简化版&Location加速版

    根据前面surf简化版的结构,重新把ORB检测的代码给简化以下,发现虽然速度一样,确实能省好多行代码,关键是有 BruteForceMatcher<HammingLUT>matcher的帮 ...

  5. [vijos P1014] 旅行商简化版

    昨天早上上课讲旅行商问题,有点难,这周抽空把3^n的算法码码看.不过这个简化版已经够折腾人了. 其一不看解析不知道这是双进程动态规划,不过我看的解析停留在f[i,j]表示第一个人走到i.第二个人走到j ...

  6. 简化版的Flappy Bird开发过程(不使用第三方框架)

    目录 .1构造世界 .2在世界中添加元素 .3碰撞检测 .4添加动画特效 .5总结 .0 开始之前 之前曾经用Html5/JavaScript/CSS实现过2048,用Cocos2d-html5/Ch ...

  7. vijosP1014 旅行商简化版

    vijosP1014 旅行商简化版 链接:https://vijos.org/p/1014 [思路] 双线DP. 设ab,ab同时走.用d[i][j]表示ab所处结点i.j,且定义i>j,则有转 ...

  8. redux-simple 简化版的redux

    作为react的粉丝,当然要吐槽一下react组件通信问题.react的单向数据流是组件通信的一大阻碍,只允许父组件向子组件传值,子组件向父组件传值只能通过父组件向子组件传递回调函数实现.如果在深层次 ...

  9. 信号和槽有一个非常精炼的C++实现,作者是Sarah Thompson,该实现只有一个头文件sigslot.h,跨平台且线程安全

    关于信号和槽有一个非常精炼的C++实现,作者是Sarah Thompson,该实现只有一个头文件sigslot.h,跨平台且线程安全. 源码在:http://sigslot.cvs.sourcefor ...

随机推荐

  1. wireshatk_teach

    wireshark抓包新手使用教程 Wireshark是非常流行的网络封包分析软件,可以截取各种网络数据包,并显示数据包详细信息.常用于开发测试过程各种问题定位.本文主要内容包括: 1.Wiresha ...

  2. Python基础之流程控制for循环

    目录 1. 语法 2. for+break 3. for+continue 4. for循环嵌套 1. 语法 while循环可以对任何内容循环,但循环次数不可控 for循环基于容器类型的长度,循环次数 ...

  3. 47-Generate Parentheses

    Generate Parentheses My Submissions QuestionEditorial Solution Total Accepted: 86957 Total Submissio ...

  4. 6. Reverse Linked List 逆转单链表

    逆转单链表,比较简单,不细讲,扫描依次改变指针指向. class Solution { public: ListNode* reverseList(ListNode* head) { if(head= ...

  5. 网站性能调优实战-学相伴KuangStudy

    面对并发我们是如何优化KuangStudy网站性能的? 每个项目都会随着用户和数据的增长调整架构,来面对未来的问题,我们也不例外,在1月5号我们平台正式公测后,引起了很多观众的热烈反响,仅仅4天,注册 ...

  6. Scala和Java的List集合互相转换

    import java.util import scala.collection.mutable /** * 集合互相转换 */ object ScalaToJava { def main(args: ...

  7. 数组实现堆栈——Java实现

    1 package struct; 2 3 4 //接口 5 interface IArrayStack{ 6 //栈的容量 7 int length(); 8 //栈中元素个数(栈大小) 9 int ...

  8. JavaIO——转换流、字符编码

    1.转换流 转换流是将字节流变成字符流的流. OutputStreamWriter:将字节输出流转换成字符输出流. public class OutputStreamWriter extends Wr ...

  9. 图的存储(Java)以及遍历

    // 深搜 private void dfs(int v) { visited[v] = true; System.out.print(v+" "); for (int i = 0 ...

  10. Spring Batch : 在不同steps间传递数据

    参考文档: How can we share data between the different steps of a Job in Spring Batch? Job Scoped Beans i ...