1. 题目

1.1 英文题目

Given an integer rowIndex, return the rowIndexth (0-indexed) row of the Pascal's triangle.

In Pascal's triangle, each number is the sum of the two numbers directly above it as shown:

1.2 中文题目

输出杨辉三角形的指定行

1.3输入输出

输入 输出
rowIndex = 3 [1,3,3,1]
rowIndex = 0 [1]
rowIndex = 1 [1,1]

1.4 约束条件

0 <= rowIndex <= 33

2. 实验平台

IDE:VS2019

IDE版本:16.10.1

语言:c++11

3. 分析

这一题最简单粗暴的方法就是先求出到指定行的杨辉三角形,之后再取最后一行作为结果,代码为:

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<vector<int>> ans(rowIndex + 1);
for(int i = 0; i < rowIndex + 1; i++)
{
ans[i].resize(i + 1);
ans[i][0] = ans[i][i] = 1;
for(int j = 1; j < i; j++)
{
ans[i][j] = ans[i - 1][j - 1] + ans[i - 1][j];
}
}
return ans[rowIndex];
}
};

这样做也固然没问题,但是算法很冗杂,不够优化,我们可以适当优化下,不需要把所有行的结果都存储起来,只需要保存最后一行。新代码如下:

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
for(int i = 0; i < rowIndex + 1; i++)
{
vector<int> temp(i + 1);
temp[0] = temp[i] = 1;
for(int j = 1; j < i; j++)
{
temp[j] = ans[j - 1] + ans[j];
}
ans = temp;
}
return ans;
}
};

但是我们提交后发现算法时间和空间复杂度都没变,于是我在想还有没有优化空间,我发现每行计算时都需要重新定义temp,并为其开辟内存空间,有待优化,故可以将其提前定义,并在每行计算时重定义temp大小,代码如下:

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
vector<int> temp;
for(int i = 0; i < rowIndex + 1; i++)
{
temp.resize(i + 1);
temp[0] = temp[i] = 1;
for(int j = 1; j < i; j++)
{
temp[j] = ans[j - 1] + ans[j];
}
ans = temp;
}
return ans;
}
};

这次性能不错。但是我觉得有个temp,还是很繁琐,那么能不能去掉temp呢,但是如果去掉temp,递推那一步就会涉及混乱,考虑到递推关系式是j-1和j,于是我们可以在递推时进行反向递推,代码如下:

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
for(int i = 0; i < rowIndex + 1; i++)
{
ans.resize(i + 1);
ans[0] = ans[i] = 1;
for(int j = i - 1; j > 0; j--)
ans[j] += ans[j - 1];
}
return ans;
}
};

这次算法空间复杂度又提高了,另外,每次都要重新定义ans的尺寸,能不能不这么做呢?我想到每次循环只是比之前尺寸多1,因此可以不重新定义尺寸,而是尺寸加1,即使用push_back();具体代码如下:

class Solution {
public:
vector<int> getRow(int rowIndex) {
vector<int> ans;
for(int i = 0; i < rowIndex + 1; i++)
{
ans.push_back(1);
for(int j = i - 1; j > 0; j--)
ans[j] += ans[j - 1];
}
return ans;
}
};

Leetcode No.119 Pascal's Triangle II(c++实现)的更多相关文章

  1. LeetCode OJ 119. Pascal's Triangle II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  2. 【一天一道LeetCode】#119. Pascal's Triangle II

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  3. 【LeetCode】119. Pascal's Triangle II

    题目: Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [ ...

  4. leetcode 118. Pascal's Triangle 、119. Pascal's Triangle II 、120. Triangle

    118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp- ...

  5. 118/119. Pascal's Triangle/II

    原文题目: 118. Pascal's Triangle 119. Pascal's Triangle II 读题: 杨辉三角问题 '''118''' class Solution(object): ...

  6. 119. Pascal's Triangle II@python

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

  7. [LeetCode] 119. Pascal's Triangle II 杨辉三角之二

    Given a non-negative index k where k ≤ 33, return the kth index row of the Pascal's triangle. Note t ...

  8. [LeetCode]题解(python):119 Pascal's Triangle II

    题目来源 https://leetcode.com/problems/pascals-triangle-ii/ Given an index k, return the kth row of the ...

  9. LeetCode 119. Pascal's Triangle II (杨辉三角之二)

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

随机推荐

  1. Synchronize 和 volatile 的区别

    1. 在应用层面来讲 a. volatile是线程同步的轻量级实现,所以volatile的性能要比synchronize好: volatile只能用于修饰变量,synchronize可以用于修饰方法. ...

  2. 西门子S7200/300/400以太网通讯处理器选型分类

    北京华科远创科技有限研发的远创智控转以太网模块适用于西门子S7-200/S7-300/S7-400.SMART S7-200.西门子数控840D.840DSL.合信.亿维PLC的PPI/MPI/PRO ...

  3. 又卡了~从王者荣耀看Android屏幕刷新机制

    前言 正在带妹子上分的我,团战又卡了,我该怎么向妹子解释?在线等. "卡"的意思 不管是端游还是手游,我们都会时不时遇到"卡"的时候,一般这个卡有两种含义: 掉 ...

  4. Spring框架两大核心机制(IoC、AOP)

    IoC(控制反转)/ DI(依赖注入) AOP(面向切面编程) Spring 是一个企业级开发框架,是软件设计层面的框架,优势在于可以将应用程序进行分层,开发者可以自主选择组件. MVC:Struts ...

  5. [leetcode] 75. 分类颜色(常数空间且只扫描一次算法)

    75. 分类颜色 我们直接按难度最高的要求做:你能想出一个仅使用常数空间的一趟扫描算法吗? 常数空间 只能扫描一趟.注意,是一趟,而不是O(n) 题中只会出现3个数字:0,1,2.换句话说,0肯定在最 ...

  6. pytest - 失败重运行机制:rerun

    失败重运行机制 用例失败的情况下,可以重新运行用例 一旦用例失败,马上重新运行 安装插件:pip install pytest-rerunfailures 使用命令:--reruns 重试次数 如 - ...

  7. GPU端到端目标检测YOLOV3全过程(下)

    GPU端到端目标检测YOLOV3全过程(下) Ubuntu18.04系统下最新版GPU环境配置 安装显卡驱动 安装Cuda 10.0 安装cuDNN 1.安装显卡驱动 (1)这里采用的是PPA源的安装 ...

  8. 硬件安全模块如何启用AUTOSAR

    硬件安全模块如何启用AUTOSAR How hardware security modules enable AUTOSAR 越来越复杂的软件和车内连接需要越来越多的加密保护.这种保护也必须由经典的实 ...

  9. 基于kerberos的hadoop安全集群搭建

    目录 前置条件 kerberos相关 给hadoop各组件创建kerberos账号 将这些账号做成keytab core-site.xml HDFS datanode的安全配置 证书生成和安装 hdf ...

  10. 题解 P2257 YY的GCD

    P2257 YY的GCD 解题思路 果然数论的题是真心不好搞. 第一个莫比乌斯反演的题,好好推一下式子吧..(借鉴了blog) 我们要求的答案就是\(Ans=\sum\limits_{i=1}^{n} ...