「ARC 107A」Simple Math

  Link.

  答案为:

\[\frac{a(a+1)\cdot b(b+1)\cdot c(c+1)}{8}
\]

「ARC 107B」Quadruple

  Link.

  枚举 \(i=c+d\),则 \(a+b=i+k\),乘法原理计数。

「ARC 107C」Shuffle Permutation

  Link.

  由于矩阵内无相等元素,所以行和列的顺序可以直接乘法原理。以对行的排列方案计数为例,并查集维护所有可以交换位置的行,则行的方案为每个集合大小的阶乘之积。列同理。

「ARC 107D」Number of Multisets

  Link.

  我真的傻了啊这题都想不出来。

  DP,令 \(f(i,j)\) 表示 \(n=i,k=j\) 时的答案。利用当 \(i<j\),\(f(i,j)=0\) 的边界,有转移:

\[f(i,j)=f(i,2j)+f(i-1,j-1)
\]

  自行理解。复杂度 \(\mathcal O(nk)\)。

「ARC 107E」Mex Mat

  Link.

  结论:\((\forall i,j>4)(a_{ij}=a_{i-1,j-1})\)。手玩一下可以证明。(

  写的时候可以用 std::vector,这样直接在同一个“数组”上二维下标引用会舒服一点。

  复杂度 \(\mathcal O(n)\)。

「ARC 107F」Sum of Abs

  Link.

  首先考虑把绝对值转化一下,对于一个集合 \(\{a\}\),显然有:

\[|\sum a|=\max\{\sum a,\sum-a\}
\]

  也就是说,一个联通块内的数可以同时取负。

  从数据范围 \(n,m\le300\) 又想到最小割。不妨先获得所有 \(|b_i|\) 的收益,然后建图描述删点的操作。

  一种建图如下(\(b_1\ge 0,b_2<0\),图中 \(i\) 应为 \(2\),抱歉 qwq):

  \(i+\) 表示这个点在联通块中作正贡献,\(i-\) 则相反。割去 \(\langle i+,i-\rangle\) 表示删去点 \(i\)。可以发现,在没有删点的情况下,两个有边相连的点不可能取一正一负,符合要求。

Solution Set -「ARC 107」的更多相关文章

  1. 「ARC 139F」Many Xor Optimization Problems【线性做法,踩标】

    「ARC 139F」Many Xor Optimization Problems 对于一个长为 \(n\) 的序列 \(a\),我们记 \(f(a)\) 表示从 \(a\) 中选取若干数,可以得到的最 ...

  2. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  3. Diary / Solution Set -「WC 2022」线上冬眠做噩梦

      大概只有比较有意思又不过分超出能力范围的题叭.   可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics   任意一个 ...

  4. Solution -「ARC 101D」「AT4353」Robots and Exits

    \(\mathcal{Description}\)   Link.   有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...

  5. Solution -「ARC 110D」Binomial Coefficient is Fun

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...

  6. Solution -「ARC 124E」Pass to Next

    \(\mathcal{Description}\)   Link.   有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...

  7. Solution -「ARC 126E」Infinite Operations

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...

  8. Solution -「ARC 126F」Affine Sort

    \(\mathcal{Description}\)   Link.   给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...

  9. Solution -「ARC 125F」Tree Degree Subset Sum

    \(\mathcal{Description}\)   Link.   给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...

随机推荐

  1. Java反射详解:入门+使用+原理+应用场景

    反射非常强大和有用,现在市面上绝大部分框架(spring.mybatis.rocketmq等等)中都有反射的影子,反射机制在框架设计中占有举足轻重的作用. 所以,在你Java进阶的道路上,你需要掌握好 ...

  2. Python函数与lambda 表达式(匿名函数)

    Python函数 一.函数的作用 函数是组织好的,可重复使用的,用来实现单一或相关联功能的代码段 函数能提高应用的模块性和代码的重复利用率 python 内置函数:https://docs.pytho ...

  3. 计算机二级考试office专题之绝对引用相对引用

  4. codeblocks中报错:'to_string' was not declared in this scope解决方案

    在windows下使用codeblocks(编译器采用MinGW)时,有时会遇到"'to_string' was not declared in this scope"的错误,这里 ...

  5. IO_FILE——FSOP、house of orange

    FSOP 是 File Stream Oriented  Programming 的缩写.所有的 _IO_FILE 结构会由 _chain 字段连接形成一个链表,由 _IO_list_all 来维护. ...

  6. virtual studio发布到gihub

    问题 我们想要发布代码到github或者微软团队服务时候,往往发现没有本地库,所以难以发布. 解决方案 在解决方右击就可以新建git 文件都会出现小锁说明有了记录 文件夹会对应出现 右上角管理连接也会 ...

  7. 阐述JDBC操作数据库的步骤

    1. 加载驱动. Class.forName("oracle.jdbc.driver.OracleDriver"); (注意:加载驱动在JDBC 4.0中是可以省略的,自动从类路径 ...

  8. Redis的几点积累

    1.Redis比memcache快 Redis具有事务,持久化等机制,但是它还能做到高性能,原因包括如下: Libevent.和Memcached不同,Redis并没有选择libevent.Libev ...

  9. 淘系工程师讲解的使用Spring特性优雅书写业务代码

    使用Spring特性优雅书写业务代码   大家在日常业务开发工作中相信多多少少遇到过下面这样的几个场景: 当某一个特定事件或动作发生以后,需要执行很多联动动作,如果串行去执行的话太耗时,如果引入消息中 ...

  10. 多线程-线程间通信-多生产者多消费者问题(JDK1.5后Lock,Condition解决办法及开发中代码范例)

    1 package multithread4; 2 3 import java.util.concurrent.locks.Condition; 4 import java.util.concurre ...