Solution Set -「ARC 107」
「ARC 107A」Simple Math
Link.
答案为:
\]
「ARC 107B」Quadruple
Link.
枚举 \(i=c+d\),则 \(a+b=i+k\),乘法原理计数。
「ARC 107C」Shuffle Permutation
Link.
由于矩阵内无相等元素,所以行和列的顺序可以直接乘法原理。以对行的排列方案计数为例,并查集维护所有可以交换位置的行,则行的方案为每个集合大小的阶乘之积。列同理。
「ARC 107D」Number of Multisets
Link.
我真的傻了啊这题都想不出来。
DP,令 \(f(i,j)\) 表示 \(n=i,k=j\) 时的答案。利用当 \(i<j\),\(f(i,j)=0\) 的边界,有转移:
\]
自行理解。复杂度 \(\mathcal O(nk)\)。
「ARC 107E」Mex Mat
Link.
结论:\((\forall i,j>4)(a_{ij}=a_{i-1,j-1})\)。手玩一下可以证明。(
写的时候可以用 std::vector
,这样直接在同一个“数组”上二维下标引用会舒服一点。
复杂度 \(\mathcal O(n)\)。
「ARC 107F」Sum of Abs
Link.
首先考虑把绝对值转化一下,对于一个集合 \(\{a\}\),显然有:
\]
也就是说,一个联通块内的数可以同时取负。
从数据范围 \(n,m\le300\) 又想到最小割。不妨先获得所有 \(|b_i|\) 的收益,然后建图描述删点的操作。
一种建图如下(\(b_1\ge 0,b_2<0\),图中 \(i\) 应为 \(2\),抱歉 qwq):
\(i+\) 表示这个点在联通块中作正贡献,\(i-\) 则相反。割去 \(\langle i+,i-\rangle\) 表示删去点 \(i\)。可以发现,在没有删点的情况下,两个有边相连的点不可能取一正一负,符合要求。
Solution Set -「ARC 107」的更多相关文章
- 「ARC 139F」Many Xor Optimization Problems【线性做法,踩标】
「ARC 139F」Many Xor Optimization Problems 对于一个长为 \(n\) 的序列 \(a\),我们记 \(f(a)\) 表示从 \(a\) 中选取若干数,可以得到的最 ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Diary / Solution Set -「WC 2022」线上冬眠做噩梦
大概只有比较有意思又不过分超出能力范围的题叭. 可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics 任意一个 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
随机推荐
- 虚拟机上CentOS7网络配置
如果图片损坏:点击链接:https://www.toutiao.com/i6493449418249863693/ 设置网络 首先打开虚拟网络编辑器 权限打开 选择NAT模式,设置IP 应用确定之后, ...
- Mybatis-Plus的引用
一.依赖 <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-b ...
- Struts-S2-045漏洞利用
最近也是在看Struts2的漏洞,这里与大家共同探讨一下,本次我复现的是s2-045这个编号的漏洞 漏洞介绍 Apache Struts 2被曝存在远程命令执行漏洞,漏洞编号S2-045,CVE编号C ...
- Keil MDK STM32系列(九) 基于HAL和FatFs的FAT格式SD卡TF卡读写
Keil MDK STM32系列 Keil MDK STM32系列(一) 基于标准外设库SPL的STM32F103开发 Keil MDK STM32系列(二) 基于标准外设库SPL的STM32F401 ...
- 【Java】数组
文章目录 数组 一.数组的定义 二.数组的声明与创建 三.内存分析 四.三种初始化 五.数组的四个基本特点 六.数组边界 七.数组的使用 八.多维数组 九.Arrays类 十.稀疏数组 数组 一.数组 ...
- ros实例_百度语音+图灵
1 百度语音模块 参考http://blog.csdn.net/u011118482/article/details/55001444 1.1 百度语音识别包 git clonehttps://git ...
- Natasha 4.0 探索之路系列(一) 概况
Natasha 简介 Natasha 是一个基于 Roslyn 的动态编译类库, 它以极简的 API 完成了动态编译的大部分功能, 使用它可以在程序运行时编译出新的程序集. Natasha 允许开发人 ...
- 『无为则无心』Python函数 — 39、Python中异常的传播
目录 1.异常的传播 2.如何处理异常 1.异常的传播 当在函数中出现异常时,如果在函数中对异常进行了处理,则异常不会再继续传播.如果函数中没有对异常进行处理,则异常会继续向函数调用者传播.如果函数调 ...
- MySQL存储引擎(最全面的概括)
目录 一:MySQL存储引擎 1.什么是存储引擎? 2.查看存储引擎信息 二:MySQL支持的存储引擎 1.存储引擎 三:innoDB存储引擎 1.特性 2.存储结构 3.优缺点.适用场景 四:MyI ...
- python 列表删除元素,单个元素,多个连续或不连续元素
以列表a为例 import numpy as np a = ['上海市', '云南省', '内蒙古', '四川省', '天津市', '宁夏', '安徽省', '山东省', '山西省'] 删除单个元素 ...