向Vertex Shader传递vertex attribute
在VBO、VAO和EBO那一节,介绍了如何向Vertex Shader传递vertex attribute的基本方法。现在我准备把这个话题再次扩展开。
传递整型数据
之前我们的顶点属性数据都是float类型的,现在我使用int(unsigned int)类型或者double类型的数据怎么办?
比如我现在用GLubyte
来定义三角形的颜色:
GLfloat trianglePosition[] =
{
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f
};
GLubyte triangleColor[] =
{
255, 0, 0,
0, 255, 0,
0, 0, 255
};
GLuint vbo[2] = { 0 };
glCreateBuffers(2, vbo);
glNamedBufferStorage(vbo[0], sizeof(trianglePosition), trianglePosition, 0);
glNamedBufferStorage(vbo[1], sizeof(triangleColor), triangleColor, 0);
GLuint vao = 0;
glCreateVertexArrays(1, &vao);
glEnableVertexArrayAttrib(vao, 0);
glEnableVertexArrayAttrib(vao, 1);
glVertexArrayVertexBuffer(vao, 3, vbo[0], 0, sizeof(GLfloat) * 3);
glVertexArrayVertexBuffer(vao, 5, vbo[1], 0, sizeof(GLubyte) * 3); //设置vao与binding point关联的buffer的stride是sizeof(GLubyte)*3
glVertexArrayAttribBinding(vao, 0, 3);
glVertexArrayAttribFormat(vao, 0, 3, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribFormat(vao, 1, 3, GL_UNSIGNED_BYTE, GL_TRUE, 0); //设置data type为GL_UNSIGNED_BYTE,并且normalized设置为GL_TRUE
glVertexArrayAttribBinding(vao, 1, 5);
以上代码你应该很熟悉,有两处我加了注释,标记出与传递GLfloat
类型数据的不同之处。第一处是设置binding point对应的buffer的stride,这个很容易理解,没什么值得讨论的东西。关键看第二处:
glVertexArrayAttribFormat(vao, 1, 3, GL_UNSIGNED_BYTE, GL_TRUE, 0); //设置data type为GL_UNSIGNED_BYTE,并且normalized设置为GL_TRUE
之前我就一直纳闷这个命令的GLboolean normalized
到底是干啥用的,现在终于搞清楚了:这个参数只对整型的顶点属性数据起作用,来决定是否对整数类型的数据进行归一化,怎么个归一化法呢?我演示给你看:
//vertex shader
layout(location = 0) in vec3 position;
layout(location = 1) in vec3 color; //是vec3而不是uvec3
...
void main(void)
{
...
}
注意虽然数据类型是GLubyte类型的,但是传递到vertex shader却是以float为基础的vec3。这时候vertex shader接受到的color数据其实是:(1.0, 0.0, 0.0)
,(0.0, 1.0, 0.0)
和(0.0, 0.0, 1.0)
。对于无符号的整数类型譬如GLuint,GLushort和GLubyte,会从[0, MAX]线性映射到[0.0, 1.0];而对于有符号整型譬如GLuint,GLushort和GLubyte,则会从[Min, Max]线性映射到[-1.0, 1.0]。公式分别如下:
- 无符号类型的归一化:\(f = \frac{c}{2^{b}-1}\)
- 有符号类型的归一化:\(f = \frac{2c-1}{2^{b}-1}\)
c表示整数数值的大小,b表示这个整数有多少位,比如GLubyte和GLbyte是8位,GLuint和GLint是32位。
如果我们设置nomalized属性为GL_FALSE,那么整数会被直接强制转换为浮点数类型,也就是说vertex shader接受的color数据就会变成:(255.0, 0.0, 0.0)
,
(0.0, 255.0, 0.0)
和(0.0, 0.0, 255.0)
。
如果数值非常大的整数归一化到浮点数,是会丢失精度的,因此范围比较大的整数不适合归一化成浮点数,这时候我们需要直接引用整数类型的顶点属性(或者更多的时候是你需要的就是整数类型的顶点属性):
glVertexAttribIFormat(vao, 1, 3, GL_UNSIGNED_BYTE, 0);
此命令中的I
字符表示的是整数类型的意思,因为是直接引用的整数类型的数据,所以此命令不需要GLboolean normalized
参数。shader也变为:
//vertex shader
layout(location = 0) in vec3 position;
layout(location = 1) in uvec3 color; //是vec3而不是uvec3
...
void main(void)
{
...
}
如代码所示:我们可以在shader中直接引用无符号整数类型的数据了。
传递双精度浮点型数据
有了前面的铺垫,传递double类型的数据很自然就能想到存在类似这样的命令:
void glVertexArrayAttribLFormat(GLuint vaobj,
GLuint attribindex,
GLint size,
GLenum type,
GLuint relativeoffset);
使用起来也和你想的一样:
GLfloat trianglePosition[] =
{
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f
};
GLdouble triangleColor[] =
{
1.0, 1.0, 1.0,
0.5, 0.5, 0.5,
0.0, 0.0, 0.0
};
GLuint vbo[2] = { 0 };
glCreateBuffers(2, vbo);
glNamedBufferStorage(vbo[0], sizeof(trianglePosition), trianglePosition, 0);
glNamedBufferStorage(vbo[1], sizeof(triangleColor), triangleColor, 0);
GLuint vao = 0;
glCreateVertexArrays(1, &vao);
glEnableVertexArrayAttrib(vao, 0);
glEnableVertexArrayAttrib(vao, 1);
glVertexArrayVertexBuffer(vao, 3, vbo[0], 0, sizeof(GLfloat) * 3);
glVertexArrayVertexBuffer(vao, 5, vbo[1], 0, sizeof(GLdouble) * 3); //设置vao与binding point关联的buffer的stride是sizeof(GLdouble)*3
glVertexArrayAttribBinding(vao, 0, 3);
glVertexArrayAttribFormat(vao, 0, 3, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribLFormat(vao, 1, 3, GL_DOUBLE, 0); //设置data type为GL_DOUBLE
glVertexArrayAttribBinding(vao, 1, 5);
//vertex shader
layout(location = 0) in vec3 position;
layout(location = 1) in dvec3 color; //dvec3表示double类型的向量
...
void main(void)
{
...
}
interleaved attributes
之前我们使用vertex attribute的方式称为separate attributes,意思是每个vertex attribute分别单独存在两个vbo中。或者像这样,也是separate attribute的变种:
//空间位置和颜色连续存放到一个buffer中
GLfloat triangle[] =
{
-1.0f, -1.0f, //空间位置
1.0f, -1.0f,
0.0f, 1.0f,
1.0f, 0.0f, 0.0f, //颜色
0.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f
};
glNamedBufferStorage(vbo, sizeof(triangle), triangle, 0);
glEnableVertexArrayAttrib(vao, 0);
glEnableVertexArrayAttrib(vao, 1);
glVertexArrayVertexBuffer(vao, 3, vbo, 0, 2 * sizeof(GLfloat));
glVertexArrayAttribFormat(vao, 0, 2, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribBinding(vao, 0, 3);
glVertexArrayVertexBuffer(vao, 5, vbo, 6 * sizeof(GLfloat), 3 * sizeof(GLfloat)); //颜色的offset是跨过空间位置空间
glVertexArrayAttribFormat(vao, 1, 3, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribBinding(vao, 1, 5);
现在我再举例说明如何使用interleaved attributes,以加深对glVertexArrayVertexBuffer
和glVertexArrayAttribLFormat
的理解。
仍然是绘制一个三角形:
//空间位置和颜色交叉存放
GLfloat triangle[] =
{
-1.0f, -1.0f, //空间位置
1.0f, 0.0f, 0.0f, //颜色
1.0f, -1.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f, 1.0f
};
glNamedBufferStorage(vbo, sizeof(triangle), triangle, 0);
glEnableVertexArrayAttrib(vao, 0);
glEnableVertexArrayAttrib(vao, 1);
glVertexArrayVertexBuffer(vao, 3, vbo, 0, 5 * sizeof(GLfloat));
glVertexArrayAttribFormat(vao, 0, 2, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribBinding(vao, 0, 3);
glVertexArrayVertexBuffer(vao, 5, vbo, 0, 5 * sizeof(GLfloat));
glVertexArrayAttribFormat(vao, 1, 3, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat)); //颜色的relativeoffset是跳过顶点位置,即两个GLfloat
glVertexArrayAttribBinding(vao, 1, 5);
其实颜色的offset也可以指定给glVertexArrayVertexBuffer
的第三个参数offset
,而不是glVertexArrayAttribFormat
的最后一个参数relativeoffset
。
glVertexArrayVertexBuffer(vao, 5, vbo, 2 * sizeof(GLfloat), 5 * sizeof(GLfloat));//指定颜色数据的offset
glVertexArrayAttribFormat(vao, 1, 3, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribBinding(vao, 1, 5);
那这offset
和relativeoffset
到底有什么区别呢?
下面以如下方式绘制一个三角形和一个矩形。
GLfloat triangle_rect[] =
{
//三角形的空间位置和颜色交叉存放
-1.0f, -1.0f, //三角形的空间位置
1.0f, 0.0f, 0.0f, //三角形的颜色
1.0f, -1.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
//矩形的空间位置和颜色也是交叉存放
-0.5f, 0.0f, //矩形的空间位置
0.0f, 0.0f, 0.0f, //矩形的颜色
-0.5f, -1.0f,
0.3f, 0.3f, 0.3f,
0.5f, 0.0f,
0.7f, 0.7f, 0.7f,
0.5f, -1.0f,
1.0f, 1.0f, 1.0f
};
glNamedBufferStorage(vbo, sizeof(triangle_rect), triangle_rect, 0);
glEnableVertexArrayAttrib(triangle_vao, 0);
glEnableVertexArrayAttrib(triangle_vao, 1);
glVertexArrayVertexBuffer(triangle_vao, 3, vbo, 0, 5 * sizeof(GLfloat));
glVertexArrayAttribFormat(triangle_vao, 0, 2, GL_FLOAT, GL_FALSE, 0);
glVertexArrayAttribBinding(triangle_vao, 0, 3);
glVertexArrayVertexBuffer(triangle_vao, 5, vbo, 2 * sizeof(GLfloat), 5 * sizeof(GLfloat));
glVertexArrayAttribFormat(triangle_vao, 1, 3, GL_FLOAT, GL_FALSE, 2 * 0);
glVertexArrayAttribBinding(triangle_vao, 1, 5);
glEnableVertexArrayAttrib(rect_vao, 0);
glEnableVertexArrayAttrib(rect_vao, 1);
glVertexArrayVertexBuffer(rect_vao, 3, vbo, 3 * 5 * sizeof(GLfloat), 5 * sizeof(GLfloat));
glVertexArrayAttribBinding(rect_vao, 0, 3);
glVertexArrayAttribFormat(rect_vao, 0, 2, GL_FLOAT, GL_FALSE, 0);
glVertexArrayVertexBuffer(rect_vao, 5, vbo, 3 * 5 * sizeof(GLfloat), 5 * sizeof(GLfloat)); //矩形颜色的offset为跨过所有的三角形的数据
glVertexArrayAttribBinding(rect_vao, 1, 5);
glVertexArrayAttribFormat(rect_vao, 1, 3, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat)); //矩形颜色的relative offset为跨过自身的空间位置数据
看到上述代码,我相信你可能明白一些了:offset往往描述的是跨越到属于自己的数据区(跨过三角形的所有顶点数据),而在自己的数据区跨越是用relative offset来描述的(跨过矩形本身的空间位置数据)。其实也是有公式的:
//索引某个顶点的attribute公式
location = binding[attrib.binding].memory + // Start of data store in memory
binding[attrib.binding].offset + // Offset of vertex attribute in buffer
binding[attrib.binding].stride * vertex.index + // Start of *this* vertex
vertex.relative_offset; // Start of attribute relative to vertex
顶点的自动补全和截断
自动补全:
...
glVertexArrayAttribFormat(vao, 1, 1, GL_FLOAT, GL_FALSE, 0); //指定attribute index 1只有一个float分量
//vertex shader
layout(location = 1) in vec4 color; //color的y和z分量被补全为0,w分量为1
...
截断:
...
glVertexArrayAttribFormat(vao, 1, 4, GL_FLOAT, GL_FALSE, 0); //指定attribute index 1只有一个4个float分量
//vertex shader
layout(location = 1) in vec2 color; //只拿到了x和y分量,z和w直接被丢弃掉了
...
小结
通过这一节,我们掌握了如下内容:
- 能够给Vertex Shader传递整数类型的vertex attribute,以及归一化和不归一化的区别
- 能够给Vertex Shader传递double类型的vertex attribute
- 学会separate attribute和interleaved attribute的顶点数据组织以及传递方式,两种类型分别有两种,一共四种
- 了解顶点属性的自动补全和截断
向Vertex Shader传递vertex attribute的更多相关文章
- Stage3d 由浅到深理解AGAL的管线vertex shader和fragment shader || 简易教程 学习心得 AGAL 非常非常好的入门文章
Everyday Stage3D (一) Everyday Stage3D (二) Triangle Everyday Stage3D (三) AGAL的基本概念 Everyday Stage3D ( ...
- PlayCanvas PBR材质shader代码分析(vertex shader)
顶点shader主要对顶点坐标变换,将顶点坐标从local->world->view->clip 空间变换 local空间:模型物体坐标系 world空间:世界空间坐标系 view空 ...
- linearizing the depth in vertex shader
please refer to http://www.mvps.org/directx/articles/linear_z/linearz.htm When using a programmable ...
- 学习笔记:GLSL Core Tutorial – Vertex Shader(内置变量说明)
1.每个Vertex Shader都有用户定义的输入属性,例如:位置,法线向量和纹理坐标等.Vertex Shaders也接收一致变量(uniform variables). uniform vari ...
- GLSL写vertex shader和fragment shader
0.一般来说vertex shader处理顶点坐标,然后向后传输,经过光栅化之后,传给fragment shader,其负责颜色.纹理.光照等等. 前者处理之后变成裁剪坐标系(三维),光栅化之后一般认 ...
- vertex shader(4)
Swizzling and Masking 如果你使用输入.常量.临时寄存器作为源寄存器,你可以彼此独立地swizzle .x,.y,.z,.w值.如果你使用输出.临时寄存器作为目标寄存器,你可以把. ...
- vertex shader(3)
之前我们学习了如何声明顶点着色器.如何设置常量寄存器中的常量.接下来我们学习如何写和编译一个顶点着色器程序. 在我们编译一个顶点着色器之前,首先需要写一个. 有17种不同的指令(instruction ...
- vertex shader(2)
一次只有一个vertex shader是活跃的.你可以有多个vertex shader,如果一个物体特殊的变换或者灯光,你可以选择合适的vertex shader来完成这个任务. 你可能想使用vert ...
- vertex shader(1)
Vertex shader Architecture: 所有在vertex shader中的数据都用128-bit的quad-floats表示(4x32-bit). vertex shader线性地执 ...
随机推荐
- 生成元(JAVA语言)
package 第三章; import java.util.Scanner; public class 生成元 { public static void main(String[] args) { / ...
- IgniteMe -高校网络信息安全运维挑战赛
1 int __cdecl main(int argc, const char **argv, const char **envp) 2 { 3 void *v3; // eax 4 int v4; ...
- ArrayList这篇就够了
提起ArrayList,相信很多小伙伴都用过,而且还不少用.但在几年之前,我在一场面试中,面试官要求说出ArrayList的扩容机制.很显然,那个时候的我并没有关注这些,从而错过了一次机会.不过好在我 ...
- odoo 安装配置
Linux ubuntu 环境 1.建个python虚环境 也可用其他替代 virtualenv env 2.找个稳定版本下载 wget https://nightly.odoo.com/8.0/ni ...
- NameError: name 'foo' is not defined Python常见错误
1.变量或者函数名拼写错误 2.在一个定义新变量中使用增值操作符 没有定义的变量被引用时候会出现此错误
- 【linux】驱动-9-设备树插件
目录 前言 9. Linux设备树插件 9.1 格式 9.2 设备树插件的编译和加载 9.2.1 单独使用dtc工具编译 9.2.2 内核dtc工具编译设备树插件 9.2.3 加载设备树插件 9.2. ...
- Java(41-55)【 流程控制语句】
1. 2.练习题if语句的使用 3.选择语句 4. 5.循环结构 6.continue和break
- DevEco Device Tool 2.1 Beta1 的Hi3861在Windows平台的编译体验
DevEco Device Tool迎来了2.1 Beta1,其中的亮点之一是:支持Hi3861开发板的源码在Windows平台编译.带着浓厚的兴趣,第一时间做了一次体验. 首先在官网下载" ...
- docker 容器重启策略
查看docker 容器重启策略 docker inspect 容器ID docker run -d --restart=always bba-208 docker run -d --restart=o ...
- M1 和 Docker 谈了个恋爱
出于开源项目的需要,我准备把之前在 windows 下运行的开源项目移植到 Mac 上跑得试下,但是 Mac M1 芯片并不能很好地支持 Docker,这不,发现 Docker 也正式支持 Mac 了 ...