题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set
题目大意
给出一个长度为 \(n\) 的数组,选出一些数异或之和为 \(s1\),其余数异或之和为 \(s2\),求 \(s1+s2\) 最大时 \(s1\) 的最小值。
思路
你发现如果你设 \(s\) 为所有数的异或和,那么如果 \(s\) 某一位为 \(0\) 就可以拆成\(1\oplus 1\),不同就只能拆成 \(0\oplus 1\),所以我们应该多拆 \(0\) ,这个用线性基实现即可。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define ll long long
#define MAXN 100005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,tot,b[63];
ll s,s2,a[MAXN],p[63];
void ins (ll x){
for (Int i = 1;i <= tot;++ i)
if (x & (1ll << b[i])){
if (!p[i]){p[i] = x;break;}
else x ^= p[i];
}
}
signed main(){
read (n);
for (Int i = 1;i <= n;++ i) read (a[i]),s ^= a[i];
for (Int i = 62;~i;-- i) if (!(s >> i & 1)) b[++ tot] = i;
for (Int i = 62;~i;-- i) if (s >> i & 1) b[++ tot] = i;
for (Int i = 1;i <= n;++ i) ins (a[i]);
for (Int i = 1;i <= tot;++ i) if (!(s2 & (1ll << b[i]))) s2 ^= p[i];
write (s ^ s2),putchar ('\n');
return 0;
}
题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set的更多相关文章
- 题解 「2017 山东一轮集训 Day7」逆序对
题目传送门 Description 给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数.答案对 $ 10 ^ 9 + 7 $ 取模. 对于一个长度为 $ n ...
- 题解 「2017 山东一轮集训 Day5」苹果树
题目传送门 题目大意 给出一个 \(n\) 个点的图,每个点都有一个权值 \(f_i\) ,如果 \(f_i=-1\) 表示 \(i\) 这个点是坏的.定义一个点是有用的当且仅当它不是坏的,并且它连的 ...
- LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...
- 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)
[LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...
- 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP
[LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- 「2017 山东一轮集训 Day5」苹果树
「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...
随机推荐
- ES6对象扩展——扩展运算符
1.复制对象:使用扩展运算符复制对象时是浅拷贝 //复制对象:使用扩展运算符复制对象时是浅拷贝 const obj1 = { a:1, b:2, d:{ aa:1, bb:2 } } const ob ...
- canvas——绘制解锁图案
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- SpringBoot笔记(2)
一.容器功能 1.1 组件添加 1. @Configuration Full模式:获取对象时,首先在容器内搜索是否存在,如存在直接拿出 默认为Full模式,单例 配置类组件之间有依赖关系,方法会被调用 ...
- ECMAScript版本知识点汇总
ECMAScript版本知识点汇总 ES5 btoa.atob 对参数进行base64格式编码.解码 /** * btoa() * base64编码 * @param {string} str * @ ...
- hibernate01
什么是hibernate ORM框架/持久层框架 jdbc的一个框架 object reference mapping 通过管理对象来改变数据库中的数据 通过管理对象来操作数据库 hibernate的 ...
- Django的form组件——ModelForm实战
模型: from django.db import models class Book(models.Model): book_name = models.CharField(max_length=3 ...
- Windows下安装Apollo时的几个常见问题
今天在本地安装Apollo时遇到几个问题,觉得还是记录下来,希望能给有需要的朋友提供帮助. 安装的过程参考这篇教程,https://www.jianshu.com/p/6cf4b15ba82f.流程基 ...
- 编写一个应用程序,利用数组或者集合, 求出"HELLO",“JAVA”,“PROGRAM”,“EXCEPTION”四个字符串的平均长度以及字符出现重复次数最多的字符串。
public class Number { public static void main(String[] args) { String[] arr = { "HELLO", & ...
- 边缘使用 K8s 门槛太高?OpenYurt 这个功能帮你快速搭建集群!
OpenYurt作为阿里巴巴首个开源的边缘云原生项目,涉及到边缘计算和云原生两个领域.然而,许多边缘计算的开发者并不熟悉云原生相关的知识.为了降低 OpenYurt 的使用门槛,帮助更多地开发者快速上 ...
- CodeForces - 764B Timofey and cubes(模拟)
Young Timofey has a birthday today! He got kit of n cubes as a birthday present from his parents. Ev ...