光棍节的快乐

描述

光棍们,今天是光棍节。聪明的NS想到了一个活动来丰富这个光棍节。

规则如下:

每个光棍在一个纸条上写一个自己心仪女生的名字,然后把这些纸条装进一个盒子里,这些光 棍依次抽取一张纸条,如果上面的名字就是自己心仪的女生,那么主持人就在现场给该女生打电话,告诉这个光棍对她的爱慕之情,并让光棍当场表白,并得到现场所有人的祝福,没抽到的,嘿嘿就可以幸免了。

假设一共有N个光棍,其中有M个没有抽到自己的纸条,求发生这种情况一共有多少种可能.。

输入
每行包含两个整数N和M(1<M<=N<=20),以EOF结尾。
输出
对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。
样例输入
2 2
3 2
样例输出
1
3

这道题考查的是全错位排列公式。题目本身很容易,就是要知道有这么一个经典问题的递推公式。

  用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了,包含着这个错误的一切错装法分两类:
(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法。
(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的)(n-1 )份信纸b、c……装入(除B以外的)n-1个信封A、C……显然这时装错的方法有f(n-1)种。
  总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此:
f(n)=(n-1) [f(n-1)+f(n-2)]

然后需要注意的一点就是,在阶乘的运算中注意运算过程,以防溢出。

 #include <iostream>
#include <stdio.h>
#include <cmath>
using namespace std; int main(){
long long wrong[];
wrong[]=, wrong[]=,wrong[]=;
for(int i=;i<=;i++){
wrong[i] = (i-)*(wrong[i-]+ wrong[i-] );
} int m,n;
while(scanf("%d%d",&n,&m)!=EOF){
double res = ;
for(int i=n,j=;j<=m;j++,i-- ){
res = res*i/j;
} long long res0 = res* wrong[m];
printf("%lld\n",res0); } return ;
}

NYOJ 451的更多相关文章

  1. NYOJ 1007

    在博客NYOJ 998 中已经写过计算欧拉函数的三种方法,这里不再赘述. 本题也是对欧拉函数的应用的考查,不过考查了另外一个数论基本定理:如何用欧拉函数求小于n且与n互质所有的正整数的和. 记eule ...

  2. NYOJ 998

    这道题是欧拉函数的使用,这里简要介绍下欧拉函数. 欧拉函数定义为:对于正整数n,欧拉函数是指不超过n且与n互质的正整数的个数. 欧拉函数的性质:1.设n = p1a1p2a2p3a3p4a4...pk ...

  3. NYOJ 333

    http://www.cppblog.com/RyanWang/archive/2009/07/19/90512.aspx?opt=admin 欧拉函数 E(x)表示比x小的且与x互质的正整数的个数. ...

  4. NYOJ 99单词拼接(有向图的欧拉(回)路)

    /* NYOJ 99单词拼接: 思路:欧拉回路或者欧拉路的搜索! 注意:是有向图的!不要当成无向图,否则在在搜索之前的判断中因为判断有无导致不必要的搜索,以致TLE! 有向图的欧拉路:abs(In[i ...

  5. nyoj 10 skiing 搜索+动归

    整整两天了,都打不开网页,是不是我提交的次数太多了? nyoj 10: #include<stdio.h> #include<string.h> ][],b[][]; int ...

  6. 简答哈希实现 (nyoj 138 找球号2)

    例题链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=138 代码目的:复习哈希用 代码实现: #include "stdio.h&qu ...

  7. nyoj 284 坦克大战 简单搜索

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=284 题意:在一个给定图中,铁墙,河流不可走,砖墙走的话,多花费时间1,问从起点到终点至少 ...

  8. nyoj 170 网络的可靠性

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=170 思路:统计每个节点的度,将度为1的节点消去所需要的最少的边即为答案. 代码: #in ...

  9. nyoj 139 我排第几个--康拓展开

    我排第几个 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说 ...

随机推荐

  1. ListView的CheckBox实现全部选中/不选中

    在Adapter类中定义一个HashMap列表,保存每一行是否被选中: private static HashMap<Integer, Boolean> isSelected; 可见定义了 ...

  2. KMP算法-next函数求解

    KMP函数求解:一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为KMP算法.KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串 ...

  3. 【夯实Mysql基础】记一次mysql语句的优化过程

    1. [事件起因] 今天在做项目的时候,发现提供给客户端的接口时间很慢,达到了2秒多,我第一时间,抓了接口,看了运行的sql,发现就是 2个sql慢,分别占了1秒多. 一个sql是 链接了5个表同时使 ...

  4. JMeter专题系列(四)参数化

    JMeter也有像LR中的参数化,本篇就来介绍下JMeter的参数化如何去实现. 参数化:录制脚本中有登录操作,需要输入用户名和密码,假如系统不允许相同的用户名和密码同时登录,或者想更好的模拟多个用户 ...

  5. angular源码分析:angular中$rootscope的实现——scope的一生

    在angular中,$scope是一个关键的服务,可以被注入到controller中,注入其他服务却只能是$rootscope.scope是一个概念,是一个类,而$rootscope和被注入到cont ...

  6. Sharepoint学习笔记—习题系列--70-573习题解析 -(Q142-Q143)

    Question 142You have a Feature that contains an image named ImageV1.png.You plan to create a new ver ...

  7. 利用layer的mask属性实现逐渐揭示的动画效果

    github上又看到个不错的动画(https://github.com/rounak/RJImageLoader),如图: 所以就想来自己实现以下 不试不知道,这个动画还真不是看上去那么简单,我自己想 ...

  8. Java Web中请求转发和请求包含

    1.都是在一个请求中跨越多个Servlet 2.多个Servlet在一个请求中,他们共享request对象.就是在AServle中setAttribute()保存数据在BServlet中由getAtt ...

  9. android 传感器应用

    本章讲述Android开发中,传感器应用相关的知识点. 1.功能需求 做一个基于传感器的水平尺应用. 2.软件实现

  10. 基于Flume+LOG4J+Kafka的日志采集架构方案

    本文将会介绍如何使用 Flume.log4j.Kafka进行规范的日志采集. Flume 基本概念 Flume是一个完善.强大的日志采集工具,关于它的配置,在网上有很多现成的例子和资料,这里仅做简单说 ...