PTA二叉搜索树的操作集 (30分)
PTA二叉搜索树的操作集 (30分)
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
- 函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
- 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
- 函数FindMin返回二叉搜索树BST中最小元结点的指针;
- 函数FindMax返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
【程序实现】
BinTree Insert( BinTree BST, ElementType X ) {
if( !BST) {
BST = (BinTree)malloc(sizeof(BinTree));
BST->Data = X;
BST->Left = BST->Right = NULL;
return BST;
}
else if (X < BST->Data)
BST->Left = Insert(BST->Left , X);
else if(X > BST->Data)
BST->Right = Insert(BST->Right , X);
return BST;
}
Position Find( BinTree BST, ElementType X ) {
if (!BST)
return NULL;
if (BST->Data == X)
return BST;
else if (X < BST->Data)
return Find(BST->Left , X);
else if(X > BST->Data)
return Find(BST->Right , X);
}
Position FindMin( BinTree BST ) {
if (BST)
while(BST->Left)
BST = BST->Left;
return BST;
}
Position FindMax( BinTree BST ) {
if (BST)
while(BST->Right)
BST = BST->Right;
return BST;
}
BinTree Delete( BinTree BST, ElementType X ) {
if (!BST)
printf("Not Found\n");
else {
if (X < BST->Data)
BST->Left = Delete(BST->Left , X);
else if(X > BST->Data)
BST->Right = Delete(BST->Right , X);
else {
if (BST->Left && BST->Right) {
BinTree t = FindMin(BST->Right);
BST->Data = t->Data;
BST->Right = Delete(BST->Right , t->Data);
}
else {
if (BST->Left)
BST = BST->Left;
else
BST = BST->Right;
}
}
}
return BST;
}
PTA二叉搜索树的操作集 (30分)的更多相关文章
- 04-树7 二叉搜索树的操作集(30 point(s)) 【Tree】
04-树7 二叉搜索树的操作集(30 point(s)) 本题要求实现给定二叉搜索树的5种常用操作. 函数接口定义: BinTree Insert( BinTree BST, ElementType ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...
- PTA 7-2 二叉搜索树的结构(30 分)
7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...
- 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历
二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...
- [PTA] 数据结构与算法题目集 6-12 二叉搜索树的操作集
唯一比较需要思考的删除操作: 被删除节点有三种情况: 1.叶节点,直接删除 2.只有一个子节点,将子节点替换为该节点,删除该节点. 3.有两个子节点,从右分支中找到最小节点,将其值赋给被删除节点的位置 ...
- L3-1 二叉搜索树的结构 (30 分)
讲解的很不错的链接:https://blog.csdn.net/chudongfang2015/article/details/79446477#commentBox 题目链接:https://pin ...
- L3-016 二叉搜索树的结构 (30 分) 二叉树
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...
- L3-016 二叉搜索树的结构 (30 分)
二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...
- L2-004 这是二叉搜索树吗? (25 分) (树)
链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805070971912192 题目: 一棵二叉搜索树可被递归地定义为 ...
随机推荐
- windows kubectl 远程操作k8s
在windows 电脑上配置kubectl远程操作kubernetes 一.下载windows版的kubectl可执行文件 下载地址 二.创建.kube 建议使用git bash cd ~ mkdir ...
- 📝 没 2 年 React Native 开发经验,你都遇不到这些坑
如果你喜欢我的文章,希望点赞 收藏 评论 三连支持一下,谢谢你,这对我真的很重要! React Native 开发时,如果只是写些简单的页面,基本上按着官方文档 reactnative.dev就能写出 ...
- github注册教程最新版(十年程序员保姆级教程)
您可以在墨抒颖的网站体验本文章的纯净版 准备 拥有一个可以接受信息的邮箱即可 开始 点击github官网github step1.进入注册页面 点击Sign Up进入注册流程 step2.输入邮箱 这 ...
- Spring Boot中使用PostgreSQL数据库
在如今的关系型数据库中,有两个开源产品是你必须知道的.其中一个是MySQL,相信关注我的小伙伴们一定都不陌生,因为之前的Spring Boot关于关系型数据库的所有例子都是对MySQL来介绍的.而今天 ...
- 一个简单的单例模式Demo
/** * @author :nx014924 * @date :Created in 5/30/2021 1:09 PM * @description: * @modified By: * @ver ...
- Java(46)类加载器
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15201673.html 博客主页:https://www.cnblogs.com/testero ...
- NX开发库版本问题
有做NX二次开发的朋友经常问我这样的问题:我在NX8.0上开发的程序,可以在NX9.0上运行吗? 由于NX的开发库随着版本的更新也会不断更新,会增加新的方法,同时有些也会过时或者消失. 如下图:NX8 ...
- 7-Zip
7-Zip https://www.7-zip.org/
- 4.7 80--删除排序数组中的重复项 II
因为python的list可以直接del List[index],因此直接使用了暴力方法,判断是否重复了两次,是的话直接使用del. 在转向使用Java时,因为暴力方法的局限,一直在找怎样对Java的 ...
- 【UE4 C++】UObject 创建、销毁、内存管理
UObject 的创建 NewObject 模板类 本例使用 UE 4.26,只剩下 NewObject 用来创建 UObject,提供两个带不同可选参数构造函数的模板类 Outer 表示这个对象的外 ...