PTA二叉搜索树的操作集 (30分)

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
  • 函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h> typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
}; void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */ BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST ); int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i; BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n"); return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

【程序实现】

BinTree Insert( BinTree BST, ElementType X ) {
if( !BST) {
BST = (BinTree)malloc(sizeof(BinTree));
BST->Data = X;
BST->Left = BST->Right = NULL;
return BST;
}
else if (X < BST->Data)
BST->Left = Insert(BST->Left , X);
else if(X > BST->Data)
BST->Right = Insert(BST->Right , X);
return BST;
}
Position Find( BinTree BST, ElementType X ) {
if (!BST)
return NULL;
if (BST->Data == X)
return BST;
else if (X < BST->Data)
return Find(BST->Left , X);
else if(X > BST->Data)
return Find(BST->Right , X);
}
Position FindMin( BinTree BST ) {
if (BST)
while(BST->Left)
BST = BST->Left;
return BST;
}
Position FindMax( BinTree BST ) {
if (BST)
while(BST->Right)
BST = BST->Right;
return BST;
}
BinTree Delete( BinTree BST, ElementType X ) {
if (!BST)
printf("Not Found\n");
else {
if (X < BST->Data)
BST->Left = Delete(BST->Left , X);
else if(X > BST->Data)
BST->Right = Delete(BST->Right , X);
else {
if (BST->Left && BST->Right) {
BinTree t = FindMin(BST->Right);
BST->Data = t->Data;
BST->Right = Delete(BST->Right , t->Data);
}
else {
if (BST->Left)
BST = BST->Left;
else
BST = BST->Right;
}
}
}
return BST;
}

PTA二叉搜索树的操作集 (30分)的更多相关文章

  1. 04-树7 二叉搜索树的操作集(30 point(s)) 【Tree】

    04-树7 二叉搜索树的操作集(30 point(s)) 本题要求实现给定二叉搜索树的5种常用操作. 函数接口定义: BinTree Insert( BinTree BST, ElementType ...

  2. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历   二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则 ...

  3. PTA 7-2 二叉搜索树的结构(30 分)

    7-2 二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大 ...

  4. 二叉搜索树的结构(30 分) PTA 模拟+字符串处理 二叉搜索树的节点插入和非递归遍历

    二叉搜索树的结构(30 分) 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根 ...

  5. [PTA] 数据结构与算法题目集 6-12 二叉搜索树的操作集

    唯一比较需要思考的删除操作: 被删除节点有三种情况: 1.叶节点,直接删除 2.只有一个子节点,将子节点替换为该节点,删除该节点. 3.有两个子节点,从右分支中找到最小节点,将其值赋给被删除节点的位置 ...

  6. L3-1 二叉搜索树的结构 (30 分)

    讲解的很不错的链接:https://blog.csdn.net/chudongfang2015/article/details/79446477#commentBox 题目链接:https://pin ...

  7. L3-016 二叉搜索树的结构 (30 分) 二叉树

    二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...

  8. L3-016 二叉搜索树的结构 (30 分)

    二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值:若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值:它的左.右子树也分别 ...

  9. L2-004 这是二叉搜索树吗? (25 分) (树)

    链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805070971912192 题目: 一棵二叉搜索树可被递归地定义为 ...

随机推荐

  1. [转载]使用postgresql安装wordpress

    1. 环境安装sudo apt-get install apache2sudo apt-get install postgresql-9.1sudo apt-get install php5sudo ...

  2. list集合根据字段分组统计转换成map

    前言 表格需要对数据进行统计 代码实现 public Map getUnitStoreSum(String unitId, String billCode) { List store=listUnit ...

  3. Radius协议-学习

    目录 RFC Radius 协议 Radius-学习 RADIUS协议的主要特征 客户端/服务器模式 安全的消息交互机制 良好的扩展性 AAA介绍 C/S结构 RADIUS在协议栈中的位置 RADIU ...

  4. DCI架构是如何解决DDD战术建模缺点的?

    摘要:将DCI架构总结成一句话就是:领域对象(Object)在不同的场景(Context)中扮演(Cast)不同的角色(Role),角色之间通过交互(Interactive)来完成具体的业务逻辑. 本 ...

  5. PHP审计之POP链挖掘

    PHP审计之POP链挖掘 前言 续上文中的php反序列化,继续来看,这个POP的挖掘思路.在其中一直构思基于AST去自动化挖掘POP链,迫于开发能力有限.没有进展,随后找到了一个别的师傅已经实现好的项 ...

  6. ASP.NET Core Filter与IOC的羁绊

    前言 我们在使用ASP.NET Core进行服务端应用开发的时候,或多或少都会涉及到使用Filter的场景.Filter简单来说是Action的拦截器,它可以在Action执行之前或者之后对请求信息进 ...

  7. Schematics Tools(Schematics 工具)

    Schematics工具 # Process: 创建逻辑示意图 arcpy.CreateDiagram_schematics("", "", "&qu ...

  8. GAN实战笔记——第二章自编码器生成模型入门

    自编码器生成模型入门 之所以讲解本章内容,原因有三. 生成模型对大多数人来说是一个全新的领域.大多数人一开始接触到的往往都是机器学习中的分类任务--也许因为它们更为直观:而生成模型试图生成看起来很逼真 ...

  9. C#开发BIMFACE系列53 WinForm程序中使用CefSharp加载模型图纸1 简单应用

    BIMFACE二次开发系列目录     [已更新最新开发文章,点击查看详细] 在我的博客<C#开发BIMFACE系列52 CS客户端集成BIMFACE应用的技术方案>中介绍了多种集成BIM ...

  10. 如何在印刷品中使用遵循SIL Open Font License协议的字体

    如何在印刷品中使用遵循SIL Open Font License协议的字体 昨天在知乎看到了一个问题,( 如何在设计中声明字体开源许可证? - 知乎 (zhihu.com),恰好最近在研究一些开源协议 ...