摘要:本篇文章将分享无监督学习Autoencoder的原理知识,然后用MNIST手写数字案例进行对比实验及聚类分析。

本文分享自华为云社区《[Python人工智能] 十五.无监督学习Autoencoder原理及聚类可视化案例详解》,作者: eastmount。

一.什么是Autoencoder

首先,什么是自编码(Autoencoder)?自编码是一种神经网络的形式,注意它是无监督学习算法。例如现在有一张图片,需要给它打码,然后又还原图片的过程,如下图所示:

一张图片经过压缩再解压的工序,当压缩时原有的图片质量被缩减,当解压时用信息量小却包含所有关键性文件恢复出原来的图片。为什么要这么做呢?有时神经网络需要输入大量的信息,比如分析高清图片时,输入量会上千万,神经网络从上千万中学习是非常难的一个工作,此时需要进行压缩,提取原图片中具有代表性的信息或特征,压缩输入的信息量,再把压缩的信息放入神经网络中学习。这样学习就变得轻松了,所以自编码就在这个时候发挥作用。

如下图所示,将原数据白色的X压缩解压成黑色的X,然后通过对比两个X,求出误差,再进行反向的传递,逐步提升自编码的准确性。

训练好的自编码,中间那部分就是原数据的精髓,从头到尾我们只用到了输入变量X,并没有用到输入变量对应的标签,所以自编码是一种无监督学习算法。

但是真正使用自编码时,通常只用到它的前半部分,叫做编码器,能得到原数据的精髓。然后只需要创建小的神经网络进行训练,不仅减小了神经网络的负担,而且同样能达到很好的效果。

下图是自编码整理出来的数据,它能总结出每类数据的特征,如果把这些数据放在一张二维图片上,每一种数据都能很好的用其精髓把原数据区分开来。自编码能类似于PCA(主成分分析)一样提取数据特征,也能用来降维,其降维效果甚至超越了PCA。

二.Autoencoder分析MNIST数据

Autoencoder算法属于非监督学习,它是把数据特征压缩,再把压缩后的特征解压的过程,跟PCA降维压缩类似。

本篇文章的代码包括两部分内容:

  • 第一部分:使用MNIST数据集,通过feature的压缩和解压,对比解压后的图片和压缩之前的图片,看看是否一致,实验想要的效果是和图片压缩之前的差不多。
  • 第二部分:输出encoder的结果,压缩至两个元素并可视化显示。在显示图片中,相同颜色表示同一类型图片,比如类型为1(数字1),类型为2(数字2)等等,最终实现无监督的聚类。

有监督学习和无监督学习的区别

(1) 有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。
(2) 有监督学习的方法就是识别事物,识别的结果表现在给待识别数据加上了标签。因此训练样本集必须由带标签的样本组成。而非监督学习方法只有要分析的数据集的本身,预先没有什么标签。 如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不予以某种预先分类标签对上号为目的。

让我们开始编写代码吧!

第一步,打开Anaconda,然后选择已经搭建好的“tensorflow”环境,运行Spyder。

第二步,导入扩展包。

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

第三步,下载数据集。

由于MNIST数据集是TensorFlow的示例数据,所以我们只需要下面一行代码,即可实现数据集的读取工作。如果数据集不存在它会在线下载,如果数据集已经被下载,它会被直接调用。

# 下载手写数字图像数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

第四步,定义参数。

MNIST图片是28*28的像素,其n_input输入特征为784,feature不断压缩,先压缩成256个,再经过一层隐藏层压缩到128个。然后把128个放大,解压256个,再解压缩784个。最后对解压的784个和原始的784个特征进行cost对比,并根据cost提升Autoencoder的准确率。

#-------------------------------------初始化设置-------------------------------------------
# 基础参数设置
learning_rate = 0.01 #学习效率
training_epochs = 5 #5组训练
batch_size = 256 #batch大小
display_step = 1
examples_to_show = 10 #显示10个样本 # 神经网络输入设置
n_input = 784 #MNIST输入数据集(28*28) # 隐藏层设置
n_hidden_1 = 256 #第一层特征数量
n_hidden_2 = 128 #第二层特征数量
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input]))
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input]))
}

第五步,编写核心代码,即定义encoder和decoder函数来实现压缩和解压操作。

encoder就是两层Layer,分别压缩成256个元素和128个元素。decoder同样包括两层Layer,对应解压成256和784个元素。

#---------------------------------压缩和解压函数定义---------------------------------------
# Building the encoder
def encoder(x):
# 第一层Layer压缩成256个元素 压缩函数为sigmoid(压缩值为0-1范围内)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# 第二层Layer压缩成128个元素
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2 # Building the decoder
def decoder(x):
# 解压隐藏层调用sigmoid激活函数
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# 第二层Layer解压成784个元素
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2 #-----------------------------------压缩和解压操作---------------------------------------
# 压缩:784 => 128
encoder_op = encoder(X) # 解压:784 => 128
decoder_op = decoder(encoder_op)

需要注意,在MNIST数据集中,xs数据的最大值是1,最小值是0,而不是图片的最大值255,因为它已经被这里的sigmoid函数归一化了。

batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0

第六步,定义误差计算方式。

其中,y_pred表示预测的结果,调用decoder_op解压函数,decoder_op又继续调用decoder解压和encoder压缩函数,对图像数据集X进行处理。

#--------------------------------对比预测和真实结果---------------------------------------
# 预测
y_pred = decoder_op
# 输入数据的类标(Labels)
y_true = X
# 定义loss误差计算 最小化平方差
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

第七步,定义训练和可视化代码,该部分为神经网络运行的核心代码。

首先进行init初始化操作,然后分5组实验进行训练,batch_x为获取的图片数据集,通过 sess.run([optimizer, cost], feed_dict={X: batch_xs}) 计算真实图像与预测图像的误差。

#-------------------------------------训练及可视化-------------------------------------
# 初始化
init = tf.initialize_all_variables() # 训练集可视化操作
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size) # 训练数据 training_epochs为5组实验
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x)=1 min(x)=0
# 运行初始化和误差计算操作
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# 每个epoch显示误差值
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!")

第八步,调用matplotlib库画图,可视化对比原始图像和预测图像。

# 压缩和解压测试集
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # 比较原始图像和预测图像数据
f, a = plt.subplots(2, 10, figsize=(10, 2)) # 显示结果 上面10个样本是真实数据 下面10个样本是预测结果
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
plt.show()

第九步,运行代码并分析结果。

输出结果如下图所示,误差在不断减小,表示我们的无监督神经网络学习到了知识。

Extracting MNIST_data\train-images-idx3-ubyte.gz
Extracting MNIST_data\train-labels-idx1-ubyte.gz
Extracting MNIST_data\t10k-images-idx3-ubyte.gz
Extracting MNIST_data\t10k-labels-idx1-ubyte.gz Epoch: 0001 cost= 0.097888887
Epoch: 0002 cost= 0.087600455
Epoch: 0003 cost= 0.083100438
Epoch: 0004 cost= 0.078879632
Epoch: 0005 cost= 0.069106154
Optimization Finished!

通过5批训练,显示结果如下图所示,上面是真实的原始图像,下面是压缩之后再解压的图像数据。注意,其实5批训练是非常少的,正常情况需要更多的训练。

完整代码:

# -*- coding: utf-8 -*-
"""
Created on Wed Jan 15 15:35:47 2020
@author: xiuzhang Eastmount CSDN
"""
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data #-----------------------------------初始化设置---------------------------------------
# 基础参数设置
learning_rate = 0.01 #学习效率
training_epochs = 5 #5组训练
batch_size = 256 #batch大小
display_step = 1
examples_to_show = 10 #显示10个样本 # 神经网络输入设置
n_input = 784 #MNIST输入数据集(28*28) # 输入变量(only pictures)
X = tf.placeholder("float", [None, n_input]) # 隐藏层设置
n_hidden_1 = 256 #第一层特征数量
n_hidden_2 = 128 #第二层特征数量
weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input]))
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b2': tf.Variable(tf.random_normal([n_input]))
} # 导入MNIST数据
mnist = input_data.read_data_sets("MNIST_data", one_hot=False) #---------------------------------压缩和解压函数定义---------------------------------------
# Building the encoder
def encoder(x):
# 第一层Layer压缩成256个元素 压缩函数为sigmoid(压缩值为0-1范围内)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
# 第二层Layer压缩成128个元素
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
return layer_2 # Building the decoder
def decoder(x):
# 解压隐藏层调用sigmoid激活函数(范围内为0-1区间)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
# 第二层Layer解压成784个元素
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
return layer_2 #-----------------------------------压缩和解压操作---------------------------------------
# Construct model
# 压缩:784 => 128
encoder_op = encoder(X) # 解压:784 => 128
decoder_op = decoder(encoder_op) #--------------------------------对比预测和真实结果---------------------------------------
# 预测
y_pred = decoder_op # 输入数据的类标(Labels)
y_true = X # 定义loss误差计算 最小化平方差
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) #-------------------------------------训练及可视化-------------------------------------
# 初始化
init = tf.initialize_all_variables() # 训练集可视化操作
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size) # 训练数据 training_epochs为5组实验
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x)=1 min(x)=0
# 运行初始化和误差计算操作
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# 每个epoch显示误差值
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!") # 压缩和解压测试集
encode_decode = sess.run(
y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # 比较原始图像和预测图像数据
f, a = plt.subplots(2, 10, figsize=(10, 2)) # 显示结果 上面10个样本是真实数据 下面10个样本是预测结果
for i in range(examples_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
plt.show()

三.特征聚类分析

第一部分实验完成,它对比了10张原始图像和预测图像。我们接着分享第二部分的实验,生成聚类图。

第一步,修改参数。

修改如下,学习效率设置为0.001,训练批次设置为20。

# 基础参数设置
learning_rate = 0.001 #学习效率
training_epochs = 20 #20组训练
batch_size = 256 #batch大小
display_step = 1

第二步,增加encoder和decoder层数,并修改参数。

我们将隐藏层设置为4层,这样的效果会更好。首先从784压缩到128,再压缩到64、10,最后压缩到只有2个元素(特征),从而显示在二维图像上。同时更新weights值和biases值,encoder和decoder都设置为4层。

# 隐藏层设置
n_hidden_1 = 128 #第一层特征数量
n_hidden_2 = 64 #第二层特征数量
n_hidden_3 = 10 #第三层特征数量
n_hidden_4 = 2 #第四层特征数量 weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4, n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input]))
} biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
}

第三步,修改压缩和解压定义函数,也是增加到四层。

#---------------------------------压缩和解压函数定义---------------------------------------
# Building the encoder
def encoder(x):
# 压缩隐藏层调用函数sigmoid(压缩值为0-1范围内)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
# 输出范围为负无穷大到正无穷大 调用matmul函数
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 # Building the decoder
def decoder(x):
# 解压隐藏层调用sigmoid激活函数(范围内为0-1区间)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4

第四步,最后修改训练代码,我们不再观看它的训练结果,而是观察它解压前的结果。

# 观察解压前的结果
encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
# 显示encoder压缩成2个元素的预测结果
plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
plt.colorbar()
plt.show()

完整代码如下:

# -*- coding: utf-8 -*-
"""
Created on Wed Jan 15 15:35:47 2020
@author: xiuzhang Eastmount CSDN
"""
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data #-----------------------------------初始化设置---------------------------------------
# 基础参数设置
learning_rate = 0.001 #学习效率
training_epochs = 20 #20组训练
batch_size = 256 #batch大小
display_step = 1
examples_to_show = 10 #显示10个样本 # 神经网络输入设置
n_input = 784 #MNIST输入数据集(28*28) # 输入变量(only pictures)
X = tf.placeholder("float", [None, n_input]) # 隐藏层设置
n_hidden_1 = 128 #第一层特征数量
n_hidden_2 = 64 #第二层特征数量
n_hidden_3 = 10 #第三层特征数量
n_hidden_4 = 2 #第四层特征数量 weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4])),
'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4, n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input]))
} biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} # 导入MNIST数据
mnist = input_data.read_data_sets("MNIST_data", one_hot=False) #---------------------------------压缩和解压函数定义---------------------------------------
# Building the encoder
def encoder(x):
# 压缩隐藏层调用函数sigmoid(压缩值为0-1范围内)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
# 输出范围为负无穷大到正无穷大 调用matmul函数
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 # Building the decoder
def decoder(x):
# 解压隐藏层调用sigmoid激活函数(范围内为0-1区间)
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 #-----------------------------------压缩和解压操作---------------------------------------
# Construct model
# 压缩:784 => 128
encoder_op = encoder(X) # 解压:784 => 128
decoder_op = decoder(encoder_op) #--------------------------------对比预测和真实结果---------------------------------------
# 预测
y_pred = decoder_op # 输入数据的类标(Labels)
y_true = X # 定义loss误差计算 最小化平方差
cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) #-------------------------------------训练及可视化-------------------------------------
# 初始化
init = tf.initialize_all_variables() # 训练集可视化操作
with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples/batch_size) # 训练数据
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x)=1 min(x)=0
# 运行初始化和误差计算操作
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# 每个epoch显示误差值
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c))
print("Optimization Finished!") # 观察解压前的结果
encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
# 显示encoder压缩成2个元素的预测结果
plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
plt.colorbar()
plt.show()

这个训练过程需要一点时间,运行结果如下图所示:

聚类显示结果如下图所示,它将不同颜色的分在一堆,对应不同的数字。比如左下角数据集被无监督学习聚类为数字0,而另一边又是其他的数据。

但其聚类结果还有待改善,因为这只是Autoencoder的一个简单例子。希望这篇文章能够帮助博友们理解和认识无监督学习和Autoencoder算法,后续作者会更深入的分享好案例。

参考文献:

[1] 杨秀璋, 颜娜. Python网络数据爬取及分析从入门到精通(分析篇)[M]. 北京:北京航天航空大学出版社, 2018.
[2] “莫烦大神” 网易云视频地址
[3] https://study.163.com/course/courseLearn.htm?courseId=1003209007
[4] https://github.com/siucaan/CNN_MNIST
[5] https://github.com/eastmountyxz/AI-for-TensorFlow
[6]《机器学习》周志华
[7] 深度学习(07)RNN-循环神经网络-02-Tensorflow中的实现 - 莫失莫忘Lawlite
[8] https://github.com/lawlite19/DeepLearning_Python

点击关注,第一时间了解华为云新鲜技术~

技术+案例详解无监督学习Autoencoder的更多相关文章

  1. spring的IOC,DI及案例详解

    一:spring的基本特征 Spring是一个非常活跃的开源框架:它是一个基于Core来架构多层JavaEE系统的框架,它的主要目的是简化企业开发.Spring以一种非侵入式的方式来管理你的代码,Sp ...

  2. 深入浅出 spring-data-elasticsearch - 基本案例详解(三

    『  风云说:能分享自己职位的知识的领导是个好领导. 』运行环境:JDK 7 或 8,Maven 3.0+技术栈:SpringBoot 1.5+, Spring Data Elasticsearch ...

  3. ​ 用一个开发案例详解Oracle临时表

    ​ 用一个开发案例详解Oracle临时表 2016-11-14 bisal ITPUB  一.开发需求  最近有一个开发需求,大致需要先使用主表,或主表和几张子表关联查询出ID(主键)及一些主表字段 ...

  4. http500:服务器内部错误案例详解(服务器代码语法错误或者逻辑错误)

    http500:服务器内部错误案例详解(服务器代码语法错误或者逻辑错误) 一.总结 服务器内部错误可能是服务器中代码运行的时候的语法错误或者逻辑错误 二.http500:服务器内部错误案例详解 只是一 ...

  5. spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解

    spss进行判别分析步骤_spss判别分析结果解释_spss判别分析案例详解 1.Discriminant Analysis判别分析主对话框 如图 1-1 所示 图 1-1 Discriminant ...

  6. str_replace函数的使用规则和案例详解

    str_replace函数的使用规则和案例详解 str_replace函数的简单调用: <?php $str = '苹果很好吃.'; //请将变量$str中的苹果替换成香蕉 $strg = st ...

  7. 第7.20节 案例详解:Python抽象类之真实子类

    第7.20节 案例详解:Python抽象类之真实子类 上节介绍了Python抽象基类相关概念,并介绍了抽象基类实现真实子类的步骤和语法,本节结合一个案例进一步详细介绍. 一.    案例说明 本节定义 ...

  8. 第7.18节 案例详解:Python类中装饰器@staticmethod定义的静态方法

    第7.18节 案例详解:Python类中装饰器@staticmethod定义的静态方法 上节介绍了Python中类的静态方法,本节将结合案例详细说明相关内容. 一.    案例说明 本节定义了类Sta ...

  9. 第7.16节 案例详解:Python中classmethod定义的类方法

    第7.16节  案例详解:Python中classmethod定义的类方法 上节介绍了类方法定义的语法以及各种使用的场景,本节结合上节的知识具体举例说明相关内容. 一.    案例说明 本节定义的一个 ...

  10. 第7.13节 案例详解:Python类变量

    第7.13节 案例详解:Python类变量 上节介绍了类变量的定义和使用方法,并举例进行了说明.本节将通过一个更完整的例子来说明. 一.    定义函数dirp def dirp(iter): ret ...

随机推荐

  1. .net core中你的MD5用对了吗?

    本文的项目环境为 .net 6.0 (.net 5.0 以上都支持) 在 .net 中获取字符串的 MD5 相信是非常容易的事情吧, 但是随便在网上搜一搜发现流传的版本还不少呢,比如: StringB ...

  2. RLChina2022公开课-博弈论

    纯博弈: 单纯的动机组合,离散的集合 混合博弈: 加入了概率论,以百分比的概率执行不同的的动机.,概率分布 零和博弈.合作博弈.协同博弈 扩展博弈和非完美信息 扩展博弈.贝叶斯博弈 纳什均衡 任何一位 ...

  3. 两个对于电影片段的情绪研究(中国&国外)

    1.国内的研究(A new standardized emotional film database for Asian culture) 测试片使用了8种情绪类型,每部片子有4个维度的分数,分数是从 ...

  4. 2023浙江省大学生信息安全竞赛决赛 Cry+Misc wp

    搞到了一些附件,做做看难度如何. CRYPTO R_r 1.题目信息 查看代码 from Crypto.Util.number import * import random from gmpy2 im ...

  5. (Good topic)字符串的最大公因子 (3.21leetcode每日打卡)

      对于字符串 S 和 T,只有在 S = T + ... + T(T 与自身连接 1 次或多次)时,我们才认定 "T 能除尽 S". 返回最长字符串 X,要求满足 X 能除尽 s ...

  6. springBoot + 工厂模式 实现 快递鸟、顺丰和快递100的物流查询

    前言: 在Spring Boot中实现快递鸟.顺丰和快递100的物流查询功能通常需要与它们提供的API进行交互.当然使用他们的API 我们是需要申请和注册,从而去拿到 key 来进行调用.所以为注册的 ...

  7. 【封装】Trie

    #include<cstdio> const int N = 1e6 + 5; struct Trie{ int root, id; bool bit[32]; struct Node{ ...

  8. [ABC309G] Ban Permutation

    Problem Statement Find the number, modulo $998244353$, of permutations $P=(P_1,P_2,\dots,P_N)$ of $( ...

  9. [ABC263G] Erasing Prime Pairs

    Problem Statement There are integers with $N$ different values written on a blackboard. The $i$-th v ...

  10. 数字孪生技术与VR技术的结合会为我们带来什么?

    数字孪生技术与虚拟现实(VR)技术的结合为我们打开了全新的可能性和机遇.这个强大的联合为各个领域带来了巨大的影响和创新. 首先,数字孪生技术与VR技术的结合可以为设计和规划过程提供更直观.身临其境的体 ...