本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。

学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。

本文是 LeetCode 上分之旅系列的第 45 篇文章,往期回顾请移步到文章末尾~

LeetCode 双周赛 113 概览

T1. 使数组成为递增数组的最少右移次数(Easy)

  • 标签:模拟、暴力、线性遍历

T2. 删除数对后的最小数组长度(Medium)

  • 标签:二分答案、双指针、找众数、

T3. 统计距离为 k 的点对(Medium)

  • 标签:枚举、散列表

T4. 可以到达每一个节点的最少边反转次数(Hard)

  • 标签:树上 DP


T1. 使数组成为递增数组的最少右移次数(Easy)

https://leetcode.cn/problems/minimum-right-shifts-to-sort-the-array/description/

题解一(暴力枚举)

简单模拟题。

由于题目数据量非常小,可以把数组复制一份拼接在尾部,再枚举从位置 $i$ 开始长为 $n$ 的连续循环子数组是否连续,是则返回 $(n - i)%n$:

class Solution {
fun minimumRightShifts(nums: MutableList<Int>): Int {
val n = nums.size
nums.addAll(nums)
for (i in 0 until n) {
if ((i + 1 ..< i + n).all { nums[it] > nums[it - 1]}) return (n - i) % n
}
return -1
}
}
class Solution:
def minimumRightShifts(self, nums: List[int]) -> int:
n = len(nums)
nums += nums
for i in range(0, n):
if all(nums[j] > nums[j - 1] for j in range(i + 1, i + n)):
return (n - i) % n
return -1

复杂度分析:

  • 时间复杂度:$O(n^2)$ 双重循环;
  • 空间复杂度:$O(n)$ 循环数组空间。

题解二(线性遍历)

更优的写法,我们找到第一个逆序位置,再检查该位置后续位置是否全部为升序,且满足 $nums[n - 1] < nums[0]$:

class Solution {
fun minimumRightShifts(nums: List<Int>): Int {
val n = nums.size
for (i in 1 until n) {
// 第一段
if (nums[i] >= nums[i - 1]) continue
// 第二段
if (nums[n - 1] > nums[0]) return -1
for (j in i until n - 1) {
if (nums[j] > nums[j + 1]) return -1
}
return n - i
}
return 0
}
}

复杂度分析:

  • 时间复杂度:$O(n)$ $i$ 指针和 $j$ 指针总计最多移动 $n$ 次;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

T2. 删除数对后的最小数组长度(Medium)

https://leetcode.cn/problems/minimum-array-length-after-pair-removals/

题解一(二分答案)

问题存在单调性:

  • 当操作次数 $k$ 可以满足时,操作次数 $k - 1$ 一定能满足;
  • 当操作次数 $k$ 不可满足时,操作次数 $k + 1$ 一定不能满足。

那么,原问题相当于求解满足目标的最大操作次数。

现在需要考虑的问题是:如何验证操作次数 $k$ 是否可以完成?

一些错误的思路:

  • 尝试 1 - 贪心双指针: $nums[i]$ 优先使用最小值,$nums[j]$ 优先使用最大值,错误用例:$[1 2 3 6]$;
  • 尝试 2 - 贪心: $nums[i]$ 优先使用最小值,$nums[j]$ 使用大于 $nums[i]$ 的最小值,错误用例:$[1 2 4 6]$;
  • 尝试 3 - 贪心: 从后往前遍历,$nums[i]$ 优先使用较大值,$nums[j]$ 使用大于 $nums[i]$ 的最小值,错误用例:$[2 3 4 8]$。

开始转换思路:

能否将数组拆分为两部分,作为 nums[i] 的分为一组,作为 $nums[j]$ 的分为一组。 例如,在用例 $[1 2 | 3 6]$ 和 $[1 2 | 4 6]$ 和 $[2 3 | 4 8]$ 中,将数组的前部分作为 $nums[i]$ 而后半部分作为 $nums[j]$ 时,可以得到最优解,至此发现贪心规律。

设数组的长度为 $n$,最大匹配对数为 $k$:

  • 结论 1: 使用数组的左半部分作为 $nums[i]$ 且使用数组的右半部分作为 $nums[j]$ 总能取到最优解。反之,如果使用右半部分的某个数 $nums[t]$ 作为 $nums[i]$,相当于占用了一个较大的数,不利于后续 $nums[i]$ 寻找配对;
  • 结论 2: 当固定 $nums[i]$ 时,$nums[j]$ 越小越好,否则会占用一个较大的位置,不利于后续 $nums[i]$ 寻找配对。因此最优解一定是使用左半部分的最小值与右半部分的最小值配对。

总结:如果存在 $k$ 对匹配,那么一定可以让最小的 $k$ 个数和最大的 $k$ 个数匹配。

基于以上分析,可以写出二分答案:

class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
var left = 0
var right = n / 2
while (left < right) {
val k = (left + right + 1) ushr 1
if ((0 ..< k).all { nums[it] < nums[n - k + it] }) {
left = k
} else {
right = k - 1
}
}
return n - 2 * left
}
}

复杂度分析:

  • 时间复杂度:$O(nlgn)$ 二分答案次数最大为 $lgn$ 次,单次检验的时间复杂度是 $O(n)$;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

题解二(双指针)

基于题解一的分析,以及删除操作的上界 $n / 2$,我们可以仅使用数组的后半部分与前半部分作比较,具体算法:

  • i 指针指向索引 $0$
  • j 指针指向索引 $(n + 1) / 2$
  • 向右枚举 $j$ 指针,如果 $i$、$j$ 指针指向的位置能够匹配,则向右移动 $i$ 指针;
  • 最后 $i$ 指针移动的次数就等于删除操作次数。
class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
var i = 0
for (j in (n + 1) / 2 until n) {
if (nums[i] < nums[j]) i++
}
return n - 2 * i
}
}

复杂度分析:

  • 时间复杂度:$O(n)$ 线性遍历;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

题解三(众数)

由于题目的操作只要满足 $nums[i] < nums[j]$,即两个数不相等即可,那么问题的解最终仅取决于数组中的众数的出现次数:

  • 如果众数的出现次数比其他元素少,那么所有元素都能删除,问题的结果就看数组总长度是奇数还是偶数;
  • 否则,剩下的元素就是众数:$s - (n - s)$

最后,由于数组是非递减的,因此可以在 $O(1)$ 空间求出众数的出现次数:

class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
var s = 1
var cur = 1
for (i in 1 until n) {
if (nums[i] == nums[i - 1]) {
s = max(s, ++ cur)
} else {
cur = 1
}
}
if (s <= n - s) {
return n % 2
} else {
return s - (n - s)
}
}
}

复杂度分析:

  • 时间复杂度:$O(n)$ 线性遍历;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

题解四(找规律 + 二分查找)

继续挖掘数据规律:

$s <= n - s$ 等价于众数的出现次数超过数组长度的一半,由于数组是有序的,那么一定有数组的中间位置就是众数,我们可以用二分查找找出众数在数组中出现位置的边界,从而计算出众数的出现次数。

由此,我们甚至不需要线性扫描都能计算出众数以及众数的出现次数,Nice!

当然,最后计算出来的出现次数有可能没有超过数组长度的一半。

class Solution {
fun minLengthAfterRemovals(nums: List<Int>): Int {
val n = nums.size
val x = nums[n / 2]
val s = lowerBound(nums, x + 1) - lowerBound(nums, x)
return max(2 * s - n, n % 2)
} fun lowerBound(nums: List<Int>, target: Int): Int {
var left = 0
var right = nums.size - 1
while (left < right) {
val mid = (left + right + 1) ushr 1
if (nums[mid] >= target) {
right = mid - 1
} else {
left = mid
}
}
return if (nums[left] == target) left else left + 1
}
}

复杂度分析:

  • 时间复杂度:$O(lgn)$ 单次二分查找的时间复杂度是 $O(lgn)$;
  • 空间复杂度:$O(1)$ 仅使用常量级别空间。

相似题目:


T3. 统计距离为 k 的点对(Medium)

https://leetcode.cn/problems/count-pairs-of-points-with-distance-k/

题解(散列表)

  • 问题目标: 求 $(x1 xor x2) + (y1 xor y2) == k$ 的方案数;
  • 技巧: 对于存在多个变量的问题,可以考虑先固定其中一个变量;

容易想到两数之和的问题模板,唯一需要思考的问题是如何设计散列表的存取方式:

对于满足 $(x1\ xor\ x2) + (y1\ xor\ y2) == k$ 的方案,我们抽象为两部分 $i + j = k$,其中,$i = (x1\ xor\ x2)$ 的取值范围为 $[0, k]$,而 $j = k - i$,即总共有 $k + 1$ 种方案。本题的 $k$ 数据范围很小,所以我们可以写出时间复杂度 $O(nk)$ 的算法。

class Solution {
fun countPairs(coordinates: List<List<Int>>, k: Int): Int {
var ret = 0
// <x, <y, cnt>>
val map = HashMap<Int, HashMap<Int, Int>>()
for ((x2, y2) in coordinates) {
// 记录方案
for (i in 0 .. k) {
if (!map.containsKey(i xor x2)) continue
ret += map[i xor x2]!!.getOrDefault((k - i) xor y2, 0)
}
// 累计次数
map.getOrPut(x2) { HashMap<Int, Int>() }[y2] = map[x2]!!.getOrDefault(y2, 0) + 1
}
return ret
}
}

Python 计数器支持复合数据类型的建,可以写出非常简洁的代码:

class Solution:
def countPairs(self, coordinates: List[List[int]], k: int) -> int:
c = Counter()
ret = 0
for x2, y2 in coordinates:
# 记录方案
for i in range(k + 1):
ret += c[(i ^ x2, (k - i) ^ y2)]
# 累计次数
c[(x2, y2)] += 1
return ret

复杂度分析:

  • 时间复杂度:$O(n·k)$ 线性枚举,每个元素枚举 $k$ 种方案;
  • 空间复杂度:$O(n)$ 散列表空间。

T4. 可以到达每一个节点的最少边反转次数(Hard)

https://leetcode.cn/problems/minimum-edge-reversals-so-every-node-is-reachable/

问题分析

初步分析:

  • 问题目标: 求出以每个节点为根节点时,从根节点到其他节点的反转操作次数,此题属于换根 DP 问题

思考实现:

  • 暴力: 以节点 $i$ 为根节点走一次 BFS/DFS,就可以在 $O(n)$ 时间内求出每个节点的解,整体的时间复杂度是 $O(n^2)$

思考优化:

  • 重叠子问题: 相邻边连接的节点间存在重叠子问题,当我们从根节点 $u$ 移动到其子节点 $v$ 时,我们可以利用已有信息在 $O(1)$ 时间算出 $v$ 为根节点时的解。

具体实现:

  • 1、随机选择一个点为根节点 $u$,在一次 DFS 中根节点 $u$ 的反转操作次数:
  • 2、$u → v$ 的状态转移:
    • 如果 $u → v$ 是正向边,则反转次数 $+ 1$;
    • 如果 $u → v$ 是反向边,则反转次数 $- 1$(从 $v$ 到 $u$ 不用反转);
  • 3、由于题目是有向图,我们可以转换为无向图,再利用标记位 $1$ 和 $-1$ 表示边的方向,$1$ 为正向边,$-1$ 为反向边。

题解(换根 DP)

class Solution {
fun minEdgeReversals(n: Int, edges: Array<IntArray>): IntArray {
val dp = IntArray(n)
val graph = Array(n) { LinkedList<IntArray>() }
// 建图
for ((from, to) in edges) {
graph[from].add(intArrayOf(to, 1))
graph[to].add(intArrayOf(from, -1))
} // 以 0 为根节点
fun dfs(i: Int, fa: Int) {
for ((to, gain) in graph[i]) {
if (to == fa) continue
if (gain == -1) dp[0] ++
dfs(to, i)
}
} fun dp(i: Int, fa: Int) {
for ((to, gain) in graph[i]) {
if (to == fa) continue
// 状态转移
dp[to] = dp[i] + gain
dp(to, i)
}
} dfs(0, -1)
dp(0, -1) return dp
}
}

复杂度分析:

  • 时间复杂度:$O(n)$ DFS 和换根 DP 都是 $O(n)$;
  • 空间复杂度:$O(n)$ 递归栈空间与 DP 数组空间。

推荐阅读

LeetCode 上分之旅系列往期回顾:

️ 永远相信美好的事情即将发生,欢迎加入小彭的 Android 交流社群~

LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题的更多相关文章

  1. 刷爆 LeetCode 周赛 337,位掩码/回溯/同余/分桶/动态规划·打家劫舍/贪心

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 上周末是 LeetCode 第 337 场周赛,你参加了吗?这场周赛第三题有点放水,如果 ...

  2. LeetCode 周赛 342(2023/04/23)容斥原理、计数排序、滑动窗口、子数组 GCB

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 前天刚举办 2023 年力扣杯个人 SOLO 赛,昨天周赛就出了一场 Easy - Ea ...

  3. Kindle:自动追更之云上之旅

    2017年5月27: 原来的程序是批处理+Python脚本+Calibre2的方式,通过设定定时任务的方式,每天自动发动到自己的邮箱中.缺点是要一直开着电脑,又不敢放到服务器上~~ 鉴于最近公司查不关 ...

  4. 【Leetcode周赛】从contest-81开始。(一般是10个contest写一篇文章)

    Contest 81 (2018年11月8日,周四,凌晨) 链接:https://leetcode.com/contest/weekly-contest-81 比赛情况记录:结果:3/4, ranki ...

  5. LeetCode周赛#207

    5519. 重新排列单词间的空格 #字符串 #模拟 题目链接 题意 给定字符串text,该字符串由若干被空格包围的单词组成,也就说两个单词之间至少存在一个空格.现要你重新排列空格,使每对相邻单词间空格 ...

  6. 键盘上各键对应的ASCII码与扫描码

    键盘上各键对应的ASCII码与扫描码 vbKeyLButton 0x1 鼠标左键vbKeyRButton 0x2 鼠标右键vbKeyCancel 0x3 CANCEL 键vbKeyMButton 0x ...

  7. 【LeetCode动态规划#02】图解不同路径I + II(首次涉及二维dp数组,)

    不同路径 力扣题目链接(opens new window) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" ). 机器人每次只能向下或者向右移 ...

  8. LeetCode 周赛 340,质数 / 前缀和 / 极大化最小值 / 最短路 / 平衡二叉树

    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问. 大家好,我是小彭. 上周跟大家讲到小彭文章风格的问题,和一些朋友聊过以后,至少在算法题解方面确定了小彭的风格 ...

  9. 【Leetcode周赛】从contest-41开始。(一般是10个contest写一篇文章)

    Contest 41 ()(题号) Contest 42 ()(题号) Contest 43 ()(题号) Contest 44 (2018年12月6日,周四上午)(题号653—656) 链接:htt ...

  10. 【Leetcode周赛】从contest-91开始。(一般是10个contest写一篇文章)

    Contest 91 (2018年10月24日,周三) 链接:https://leetcode.com/contest/weekly-contest-91/ 模拟比赛情况记录:第一题柠檬摊的那题6分钟 ...

随机推荐

  1. Basic Pentesting

    来自tryhackme的 Basic Pentesting 开靶场IP:10.10.227.255 # nmap 端口扫描 PORT STATE SERVICE VERSION 22/tcp open ...

  2. 解决google翻译出错问题

    解决google翻译问题 一.为什么失效 因为google把google翻译的API给关闭了,导致翻译不了. 据网上说是服务器耗钱,但盈利不够导致的. 二.可修复的前提 国内还存有服务器可以用API ...

  3. 【电脑Tips】Win11自动更新之后开机黑屏

    目录 0.问题描述 1. 释放静电 具体操作 效果 参考博客 2. 运行explorer.exe 具体操作: [问题]:如何打开任务管理器? 效果 参考博客 另外的运行方法 3. 禁用APP Read ...

  4. vivo 游戏黑产反作弊实践

    作者:vivo 互联网安全团队 - Cai Yifan 在数字化.移动化的浪潮下,游戏产业迅速发展,尤其疫情过后许多游戏公司业务迎来新的增长点. 游戏行业从端游开始一直是黑灰产活跃的重要场景.近年来, ...

  5. ASP.NET Core 6框架揭秘实例演示[41]:跨域资源的共享(CORS)花式用法

    同源策略是所有浏览器都必须遵循的一项安全原则,它的存在决定了浏览器在默认情况下无法对跨域请求的资源做进一步处理.为了实现跨域资源的共享,W3C制定了CORS规范.ASP.NET利用CorsMiddle ...

  6. C++内存模型&空指针、野指针、函数指针和回调函数

    C++内存模型&空指针.野指针.函数指针和回调函数 C++内存模型 栈与堆的区别: 1.管理方式不同 栈是系统自动管理的,在超出作用域后,将自动被释放 堆是手动释放,若程序中不释放,程序结束后 ...

  7. Hexo、Typecho博客添加旅行足迹网页

    本文部署的足迹地图,地址如下: http://www.aomanhao.top/index.php/archives/183/ jVectorMap JVectorMap 是一个优秀的.兼容性强的 j ...

  8. 【原创】CPU性能优化小记

    CPU性能优化小记 目录 CPU性能优化小记 一.现象 TOP各指标含义 二.分析 启动应用前 启动应用后 采集内核函数的方法 内核采集分析 火焰图分析 三.解决 一.现象 业务线反馈,单板只要一跑我 ...

  9. Django+DRF+Vue 网页开发环境安装(windows/Linux)

    博客地址:https://www.cnblogs.com/zylyehuo/ 总览 一.安装 Django pip install django==3.2 二.安装 MySQL 驱动程序 pip in ...

  10. ARM Trusted Firmware——编译选项(二)

    @ 目录 1. 常用部分 2. 安全相关 2.1 签名 2.2 加密 2.3 哈希 2.4 中断 3.GICv3驱动程序选项 4. 调试选项 1. 常用部分 编译选项 解释 BL2 指定生成fip文件 ...