文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题
二、如果用go语言,证明:在最好情况下,快速排序的运行时间为 Ω(nlgn)。
文心一言:
在最好情况下,快速排序的运行时间为Ω(nlgn)的证明如下:
快速排序是一种分治算法,它将一个数组分成两个子数组,然后对这两个子数组分别进行排序。在最好情况下,每次划分都能将数组等分,即每次划分后得到的两个子数组的长度相等。
假设数组的长度为n,每次划分需要的时间为O(n),因为需要遍历整个数组来找到枢轴元素。在最好情况下,快速排序需要进行log(n)次划分,因为每次划分都会将数组的长度减半。因此,总的时间复杂度为O(nlog(n))。
由于log(n)是关于n的对数函数,其增长速度非常慢,因此我们可以忽略掉常数系数,认为在最好情况下,快速排序的时间复杂度为Ω(nlog(n))。
综上所述,在最好情况下,快速排序的运行时间为Ω(nlgn)。
讯飞星火:
在最好情况下,快速排序的运行时间为 O(n log n)。以下是使用 Go 语言实现的快速排序算法:
package main
import (
"fmt"
)
func quickSort(arr []int, low, high int) {
if low < high {
pivot := partition(arr, low, high)
quickSort(arr, low, pivot-1)
quickSort(arr, pivot+1, high)
}
}
func partition(arr []int, low, high int) int {
pivot := arr[high]
i := low - 1
for j := low; j < high; j++ {
if arr[j] < pivot {
i++
arr[i], arr[j] = arr[j], arr[i]
}
}
arr[i+1], arr[high] = arr[high], arr[i+1]
return i + 1
}
func main() {
arr := []int{10, 7, 8, 9, 1, 5}
n := len(arr)
quickSort(arr, 0, n-1)
fmt.Println("Sorted array is:", arr)
}
在这个实现中,我们使用了 Hoare 分区方案,它的时间复杂度为 O(log n)。由于我们需要对数组进行 n 次分区操作,所以最好情况下的运行时间为 O(n log n)。
360智脑:
快速排序是一种基于分治思想的排序算法,它的基本思路是在待排序序列中选择一个基准元素,将小于等于基准元素的数放在其左边,大于等于基准元素的数放在其右边,然后对左右两个子序列分别进行递归操作。当子序列的长度小于等于1时,递归终止。
在最坏情况下,快速排序的时间复杂度为 O(n^2)。但是这种情况发生的概率较小,通常快速排序的性能都比较好,因此不需要特别考虑最坏情况。
在最好情况下,假设每次分割都能将序列分成大小几乎相等的两个子序列,此时快速排序的运行时间为 O(n log n)。
在go语言中,可以使用以下代码实现快速排序:
func quicksort(arr []int, left int, right int) {
if left < right {
pivotIndex := partition(arr, left, right) // 分区函数
quicksort(arr, left, pivotIndex-1)
quicksort(arr, pivotIndex+1, right)
}
}
func partition(arr []int, left int, right int) int {
pivot := arr[right]
i, j := left, right
while i < j {
while i < j && arr[i] <= pivot {
i++
}
arr[i], arr[j] = arr[j], arr[i]
while i < j && arr[j] >= pivot {
j--
}
arr[j], arr[i] = arr[i], arr[j]
}
arr[j], arr[i] = arr[i], arr[j]
return j
}
在go语言中,可以使用递归实现快速排序,时间复杂度与快速排序相同。在最好情况下,快速排序的时间复杂度为 O(n log n),但是在实际应用中,由于随机选取基准元素等因素的干扰,快速排序的性能并不一定最优。
chatglm:
在最好情况下,快速排序的运行时间为 Ω(nlgn)。我们可以通过分析快速排序的递归过程来证明这一结论。
在最好情况下,快速排序的递归树呈线性状,即每一次划分都能将数组均匀地分为两个部分。这时,递归树的深度为 n,每一次划分的时间复杂度为 O(lgn)。由于递归树的深度为 n,所以快速排序的运行时间复杂度为 O(n * O(lgn)) = Ω(nlgn)。
下面是使用 Go 语言实现快速排序的代码,并证明了在最好情况下,其运行时间为 Ω(nlgn):
package main
import "fmt"
func quicksort(values []int, left, right int) {
if left < right {
pivotIndex := partition(values, left, right)
quicksort(values, left, pivotIndex-1)
quicksort(values, pivotIndex+1, right)
}
}
func partition(values []int, left, right int) int {
pivotIndex := left
for i := left; i < right; i++ {
if values[i] < values[pivotIndex] {
values[i], values[pivotIndex] = values[pivotIndex], values[i]
pivotIndex++
}
}
values[pivotIndex], values[right] = values[right], values[pivotIndex]
return pivotIndex
}
func main() {
values := []int{9, 7, 5, 11, 12, 2, 14, 3, 10, 6}
n := len(values)
quicksort(values, 0, n-1)
fmt.Println("Sorted array:", values)
}
在上述代码中,quicksort
函数负责对一个子数组进行快速排序,partition
函数负责进行划分操作。在最好情况下,每次划分都能将数组均匀地分为两个部分,此时递归树的深度为 n,每一次划分的时间复杂度为 O(lgn)。因此,快速排序的运行时间为 Ω(nlgn)。
通义千问:
首先,我们需要知道快速排序的基本思路:通过选择一个 pivot(枢纽)元素,将序列分为两个部分,左边的元素都小于 pivot,右边的元素都大于 pivot。然后递归地对左右两部分进行排序。
快速排序的最坏情况是当每次划分都以最大或最小的元素作为 pivot,这样会导致序列被分为只包含一个元素的两个部分,需要进行 n-1 次划分才能排序完毕,因此最坏情况下的时间复杂度为 O(n^2)。
但是,在最好情况下,每次划分都能将序列分为大小基本相等的两个部分,这样只需要进行 logn 次划分就能排序完毕,因此最好情况下的时间复杂度为 O(nlogn)。
证明最好情况下的时间复杂度为 Ω(nlgn) 可以使用数学归纳法:
1.当 n=1 时,快速排序的时间复杂度为 O(1) = 1,满足 Ω(nlgn) 的要求。
2.假设 n=k 时,快速排序的时间复杂度为 Ω(klgn),则对于 n=k+1 的情况,我们可以考虑划分后序列的两个部分:
2.1.如果左边部分的长度为 k,则递归调用快速排序的时间复杂度为 Ω(klgn);
2.2.如果左边部分的长度为 k-1,则递归调用快速排序的时间复杂度为 Ω((k-1)lgn)。
因此,整个快速排序的时间复杂度为 O(klgn) + O((k-1)lgn) = O(klgn)。 由于 n=k+1 时的情况满足了 Ω(nlgn) 的要求,因此对于 n=k+1 的情况,快速排序的时间复杂度也为 Ω(nlgn)。
综上所述,快速排序的最好情况下的时间复杂度为 Ω(nlgn)。
天工:
好的,下面是证明的步骤:
假设有一个长度为 n 的有序数组 arr,我们要对它进行快速排序。在最坏情况下,每次选取的基准值都是数组的最后一个元素,此时快速排序的时间复杂度是 O(n^2)。
在最好情况下,每次选取的基准值都能够将数组划分成两个大小相等的子数组,此时快速排序的时间复杂度是 O(nlogn)。
我们来证明最好情况下,快速排序的时间复杂度为 O(nlogn):
假设选取的基准值为 p,那么划分后的子数组 arr[p:] 和 arr[:p] 的长度分别为 (n-p)/2。
因为 p 是选取的基准值,所以 arr[p:] 中的所有元素都小于 p,而 arr[:p] 中的所有元素都大于等于 p。
因此,我们可以递归地对 arr[p:] 和 arr[:p] 分别进行快速排序。
在最坏情况下,每次选取的基准值都是数组的最后一个元素,即 arr[n-1]。因此,每次划分后,子数组的长度都是 (n-1)/2,而每次递归的时间复杂度为 O(nlogn),因此总时间复杂度为 O(nlogn)。
综上所述,最好情况下,快速排序的时间复杂度为 O(nlogn)。
chatgpt:
在最好情况下,快速排序的运行时间为 Ω(n log n) 是由于快速排序算法的特性所决定的。
快速排序是一种基于分治法的排序算法。它选择一个基准元素,将数组分割成两个子数组,其中一个子数组中的所有元素都小于基准元素,而另一个子数组中的所有元素都大于基准元素。然后对这两个子数组递归地应用快速排序算法。
在最好情况下,每次选择的基准元素都能够将数组均匀分割,使得每一次递归都能选择到一个大小接近一半的子数组。这样,快速排序的递归树的深度就是 Θ(log n),而每层递归的时间复杂度是 Θ(n)。因此,在最好情况下,快速排序的时间复杂度为 Ω(n log n)。
需要注意的是,在最坏情况下,快速排序的时间复杂度为 O(n^2),当选择的基准元素总是导致不均匀的分割时,递归树的深度将达到 n,每层递归的时间复杂度是 Θ(n)。因此,在最坏情况下,快速排序的运行时间会变慢。
总结起来,在最好情况下,快速排序的运行时间为 Ω(n log n),在最坏情况下,运行时间为 O(n^2)。
总结
文心一言 VS 讯飞星火 VS chatgpt (78)-- 算法导论7.4 2题的更多相关文章
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 基于讯飞语音API应用开发之——离线词典构建
最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...
- android用讯飞实现TTS语音合成 实现中文版
Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...
- android讯飞语音开发常遇到的问题
场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...
- 初探机器学习之使用讯飞TTS服务实现在线语音合成
最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...
随机推荐
- 2022-03-17:所有黑洞的中心点记录在holes数组里, 比如[[3,5] [6,9]]表示,第一个黑洞在(3,5),第二个黑洞在(6,9), 并且所有黑洞的中心点都在左下角(0,0),右上角(
2022-03-17:所有黑洞的中心点记录在holes数组里, 比如[[3,5] [6,9]]表示,第一个黑洞在(3,5),第二个黑洞在(6,9), 并且所有黑洞的中心点都在左下角(0,0),右上角( ...
- 2022-02-01:粉刷房子 II。 假如有一排房子,共 n 个,每个房子可以被粉刷成 k 种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。 当然,因为市场上不同颜色油漆的价
2022-02-01:粉刷房子 II. 假如有一排房子,共 n 个,每个房子可以被粉刷成 k 种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同. 当然,因为市场上不同颜色油漆的价 ...
- 2021-06-17:生成长度为size的达标数组,什么叫达标?达标:对于任意的 i<k<j,满足 [i] + [j] != [k] * 2。给定一个正数size,返回长度为size的达标数组。
2021-06-17:生成长度为size的达标数组,什么叫达标?达标:对于任意的 i<k<j,满足 [i] + [j] != [k] * 2.给定一个正数size,返回长度为size的达标 ...
- ADG级联备库环境PSU应用验证
上篇文章 源端为备库的场景下Duplicate失败问题 我只在中间备库环境应用了PSU,解决了级联备库从中间备库duplicate数据库的问题: 细心的朋友已经发现,因为是备库环境,并没有做数据库执行 ...
- docker部署gitlab CI/CD (一)第一篇:部署gitlab及汉化
网上很多类似教程,但多少有点夹带私货,有的竟然拉取的第三方镜像,而且很多都要修改配置文件,完全不知道是为什么,于是结合其他人的博客和官方文档,知其然也要知其所以然,于2023年4月17日写下这篇. 官 ...
- 记录一次ScrollViewer控件 经过大量文本数据卡顿的原因
在 WPF 中,CanContentScroll 是 ScrollViewer 控件的一个附加属性,它控制滚动视图中的内容是否按项或像素来滚动. 当 CanContentScroll 设置为 fals ...
- NeoVim 学习笔记
NeoVim 学习笔记 这篇学习笔记将用于记录本人在学习使用 NeoVim 编辑器过程中所编写的学习心得与代码.该笔记将会存放在https://github.com/owlman/study_note ...
- Java如何实现去重?这是在炫技吗?
大家好,我3y啊.由于去重逻辑重构了几次,好多股东直呼看不懂,于是我今天再安排一波对代码的解析吧.austin支持两种去重的类型:N分钟相同内容达到N次去重和一天内N次相同渠道频次去重. Java开源 ...
- 基于DSP的设备振动信号的采集技术方案综述
前记 在能源领域,由于很多地方都是无人值守,设备故障检测是一个必须面对的问题.笔者通过几个行业案例了解到,由于很多设备发生故障时候会产生特定频谱的声音,所以该行业对振动监测的需求特别强烈,由于涉及到 ...
- LLaMA模型微调版本:斯坦福 Alpaca 详解
项目代码:https://github.com/tatsu-lab/stanford_alpaca 博客介绍:https://crfm.stanford.edu/2023/03/13/alpaca.h ...