AVL树平衡旋转详解

概述

AVL树又叫做平衡二叉树。前言部分我也有说到,AVL树的前提是二叉排序树(BST或叫做二叉查找树)。由于在生成BST树的过程中可能会出现线型树结构,比如插入的顺序是:1, 2, 3, 4, 5, 6, 7..., n。在BST树中,比较理想的状况是每个子树的左子树和右子树的高度相等,此时搜索的时间复杂度是log(N)。可是,一旦这棵树演化成了线型树的时候,这个理想的情况就不存在了,此时搜索的时间复杂度是O(N),在数据量很大的情况下,我们并不愿意看到这样的结果。

现在我们要做的事就是让BST在创建的过程中不要向线型树发展。方法就是让其在添加新节点的时候,不断调整树的平衡状态。

定义:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

AVL树实现

1.节点失衡

我们对于节点平衡有这样的定义:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。而这里提到的高度差,就是我们下面会引入的平衡因子:BF(balance factor)。

因为AVL树说到底还是一个二叉树,只有两个子节点。而且节点失衡的发生,是因为有一个新节点的插入,这个新插入的节点导致了某些节点左右子节点高度的不一致。所以我们可以枚举出以下4种情况的失衡状态。

(1)在一个节点的左子树的左子树上插入一个新节点。即LL。在这种情况下,我们可以通过将节点右旋使其平衡。如图-2所示

图-2 LL单右旋操作

原A的左孩子B变为父结点,A变为其右孩子,而原B的右子树变为A的左子树,注意旋转之后Brh是A的左子树。

(2)在一个节点的右子树的右子树上插入一个新节点。即RR。在这种情况下,我们可以通过将节点左旋使其平衡。如图-3所示;

图-3 RR单左旋操作

这时只需要把树向左旋转一次即可,如图所示,原A右孩子B变为父结点,A变为其左孩子,而原B的左子树Blh将变为A的右子树。

(3)在一个节点的左子树的右子树上插入一个新节点。即LR。在这种情况下,我们不能直接通过将节点左旋或右来使其平衡了。这里需要两步来完成,先让树中高度较低的进行一次左旋(RR型),这个时候就变成了LL了。再进行一次单右旋操作即可。如图-4所示;

图-4 LR先左旋再右旋操作

这时需要旋转两次,仅一次的旋转是不能够使二叉树再次平衡。如图所示,在B节点按照RR型向左旋转一次之后,二叉树在A节点仍然不能保持平衡,这时还需要再向右旋转一次。

(4)在一个节点的右子树的左子树上插入一个新节点。即RL。在这种情况下,我们不能直接通过将节点左旋或右来使其平衡了。这里需要两步来完成,先让树中高度较低的进行一次右旋,这个时候就变成了RR了。再进行一次单左旋操作即可。如图-5所示;

图-5 RL先右旋再左旋操作

平衡二叉树某一节点的右孩子的左子树上插入一个新的节点,使得该节点不再平衡。同样,这时需要旋转两次,旋转方向刚好同LR型相反。

从上面对节点失衡的说明,以及图解。我想你已经对旋转的操作有了一个大概地认识了吧。从图中我们也可以看出,LL型和RR型、LR型和RL型是两个行为很相似地操作。其实他们互为对称。

代码见这里

AVL树平衡旋转详解的更多相关文章

  1. 数据结构-AVL树的旋转

    http://blog.csdn.net/GabrieL1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它 ...

  2. AVL树的JAVA实现及AVL树的旋转算法

    1,AVL树又称平衡二叉树,它首先是一颗二叉查找树,但在二叉查找树中,某个结点的左右子树高度之差的绝对值可能会超过1,称之为不平衡.而在平衡二叉树中,任何结点的左右子树高度之差的绝对值会小于等于 1. ...

  3. AVL树的旋转操作详解

    [0]README 0.0) 本文部分idea 转自:http://blog.csdn.net/collonn/article/details/20128205 0.1) 本文仅针对性地分析AVL树的 ...

  4. AVL树的旋转

    平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它通过旋转不平衡的节点来使二叉树重新保持平衡,并且查找.插入和删除操作在平均和最坏情况下时间复杂度都是O(log n ...

  5. AVL树的旋转实现

    AVL树:带有平衡条件的二叉查找树,即一棵AVL树是其每个节点的左子树和右子树的高度最多相差1的二叉查找树.一般通过Single Rotate和Double Rotate来保持AVL树的平衡.AVL树 ...

  6. B树与B+详解

    承接上篇SQLite采用B树结构使得SQLite内存占用资源较少,本篇将讲述B树的具体操作(建树,插入,删除等操作).在看博客时,建议拿支笔和纸,一点一点操作,毕竟知识是自己的,自己也要消化的.本篇通 ...

  7. P3384 【模板】树链剖分 题解&&树链剖分详解

    题外话: 一道至今为止做题时间最长的题: begin at 8.30A.M 然后求助_yjk dalao后 最后一次搞取模: awsl. 正解开始: 题目链接. 树链剖分,指的是将一棵树通过两次遍历后 ...

  8. BIT 树状数组 详解 及 例题

    (一)树状数组的概念 如果给定一个数组,要你求里面所有数的和,一般都会想到累加.但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组 ...

  9. IOS6屏幕旋转详解(自动旋转、手动旋转、兼容IOS6之前系统)

    转自 http://blog.csdn.net/zzfsuiye/article/details/8251060 概述: 在iOS6之前的版本中,通常使用 shouldAutorotateToInte ...

随机推荐

  1. C#面向对象(继承)

  2. Java 程序员必须收藏的资源大全

    Java 程序员必须收藏的资源大全 Java(27) 古董级工具 这些工具伴随着Java一起出现,在各自辉煌之后还在一直使用. Apache Ant:基于XML的构建管理工具.官网 cglib:字节码 ...

  3. Application.ProcessMessages; 的重要性

    https://files.cnblogs.com/files/del88/登陆光标_悬赏50元.zip ----------------------------------------------- ...

  4. Date对象和Time对象

    方法 描述  getDate()  : setDate()  返回/设置月份中的日期(1-31)  getDay()  返回星期几(0-6)  getFullYear():setFullYear() ...

  5. Python实现进度条功能

    Python实现进度条功能 import sys, time def progress(percent, width=50): # 设置进度条的宽度 if percent >= 100: # 当 ...

  6. Oracle GoldenGate常用配置端口

    1 简介 Oracle Golden Gate软件是一种基于日志的结构化数据复制备份软件,它通过解析源数据库在线日志或归档日志获得数据的增量变化,再将这些变化应用到目标数据库,从而实现源数据库与目标数 ...

  7. hihocoder 1341 Constraint Checker【string】

    hihocoder 1341 解释:这道题题目还是比较容易理解,就是根据输入的若干个不等式,校验后面输入的数据是否都满足前面的不等式,满足就输出Yes,只要有一个不满足就输出No.如“A<B&l ...

  8. binlog和redo log日志提交

    组提交(group commit)是MYSQL处理日志的一种优化方式,主要为了解决写日志时频繁刷磁盘的问题.组提交伴随着MYSQL的发展不断优化,从最初只支持redo log 组提交,到目前5.6官方 ...

  9. 矩阵优化dp

    链接:https://www.luogu.org/problemnew/show/P1939 题解: 矩阵优化dp模板题 搞清楚矩阵是怎么乘的构造一下矩阵就很简单了 代码: #include < ...

  10. 6-20 Ideal Path uva1599

    第一个bfs很快  但是我第一次做还用了结构体  这题完全不需要  反而导致了代码非常乱 输入: 一开始我是用m二维数组储存颜色  vector path来储存路径 但是二维数组的下标是不够用的   ...