二分求幂

int getMi(int a,int b)
{
int ans = ;
while (b != )
{
//当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存
if (b % == )
{
ans *= a;
}
a *= a;
b /= ;
}
return ans;
}

快速幂取模运算

公式:

最终版算法:

int PowerMod(int a, int b, int c)
{
  int ans = ;
  a = a % c;
  while(b>)
  {
    if(b % = = )ans = (ans * a) % c;
    b = b/;
    a = (a * a) % c;
  }
  return ans;
}

求Root(N,k)

题目描述
       N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000) 
输入描述
      每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)
输出描述    
 输入可能有多组数据,对于每一组数据,root(x^y, k)的值
输入
4 4 10
输出
4

代码:

#include <cstdio>
#include <math.h>
#include <cstring>
#include <algorithm> //root(x*y,k) = root(root(x,k)*root(y,k),k) int Root(int N,int k)
{
if(N<k)return N;
int ans = ;
//N大于k, 求N为k进制时各位之和
while(N != ){
ans += N%k;
N /= k;
}
return Root(ans,k);
} int getAns(int x,int y,int k)
{
int num = Root(x,k);
int ans = ;
while(y > ){
if(y%){//y为奇数
ans = Root(ans*num, k);
}
y /= ;
num = Root(num*num, k);
}
return ans;
} int main()
{
int x,y,k; while(~scanf("%d %d %d",&x,&y,&k)){
printf("%d\n",getAns(x,y,k)); } return ;
}

二分求幂/快速幂取模运算——root(N,k)的更多相关文章

  1. A^B mod C (快速幂+快速乘+取模)题解

    A^B mod C Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,B,C<2^63). ...

  2. 快速幂取模&快速乘取模

    快速幂取模 即快速求出(a^b)mod c 的值.由于当a.b的值非常大时直接求a^b可能造成溢出,并且效率低. 思路 原理就是基于\(a*b \% c = ((a \% c)*(b \% c))\% ...

  3. Divide two numbers,两数相除求商,不能用乘法,除法,取模运算

    问题描述:求商,不能用乘法,除法,取模运算. 算法思路:不能用除法,那只能用减法,但是用减法,超时.可以用位移运算,每次除数左移,相当于2倍. public class DividTwoInteger ...

  4. a ^ b mod c 取模运算优化反思(老物)

    这是一篇嘲讽我之前的自己采用笨重愚蠢思想去解决问题的日志. RSA 加密与解密涉及到 a ^ b mod c 的问题,如何计算这个值呢? 我会选择 pow(a, b) % c, 事实上在写RSA的时候 ...

  5. java 取模运算% 实则取余 简述 例子 应用在数据库分库分表

    java 取模运算%  实则取余 简述 例子 应用在数据库分库分表 取模运算 求模运算与求余运算不同.“模”是“Mod”的音译,模运算多应用于程序编写中. Mod的含义为求余.模运算在数论和程序设计中 ...

  6. HDU 4549 矩阵快速幂+快速幂+欧拉函数

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  7. HDU——1395 2^x mod n = 1(取模运算法则)

    2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  8. javascript取模运算是怎么算的?其实是取余数

    问到是否整除,这里记录下取模 比如120分钟是不是整点?120%60 === 0 为整点 javascript取模运算是一个表达式的值除以另一个表达式的值,并返回余数. 取模在js里就是取余数的意思. ...

  9. poj 3980 取模运算

    取模运算 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10931   Accepted: 6618 Description ...

随机推荐

  1. XMPP接受发送消息

    在现阶段的通信服务中,各种标准都有,因此会出现无法实现相互连通,而XMPP(Extensible Message and presence Protocol)协议的出现,实现了整个及时通信服务协议的互 ...

  2. Java 之外,是 Scala 还是 Groovy?【转载】

    原文地址 Scala 和 Groovy 都是基于 JVM 的语言,相比 Java,它们都有语法更加简明和表达能力更丰富.对于那些既想不脱离开 JVM 又想避免 Java 繁琐语句的开发人员来说,Sca ...

  3. linux 删除换行符

    今天需要删除文件里面的换行符,比如有一个文件a.txt: 1,2,3 4,5,6 1,2,3 4,5,6 1,2,3 4,5,6 1,2,3 4,5,6 1,2,3 4,5,6 1.使用vim删除换行 ...

  4. PL/SQL学习笔记之存储过程

    一:PL/SQL的两种子程序 子程序:子程序是执行一个特定功能.任务的程序模块.PL/SQL中有两种子程序:函数  和  过程. 函数:主要用于计算并返回一个值. 过程:没有直接返回值,主要用于执行操 ...

  5. Junit学习笔记之五:MockMVC

    原文:https://blog.csdn.net/xiao_xuwen/article/details/52890730 随着RESTful Web Service的流行,测试对外的Service是否 ...

  6. 那天有个小孩教我WCF[一][2/3]

    接着上次的继续讲吧 我们开始吧 9.创建数据库 use master go --创建库 if exists(select * from sysdatabases where name='NewsDB' ...

  7. 为何float有效位数为7位?

    为何float有效位数为7位? 首先我们应该明确一点:C语言中,%f表示保留7位有效数字7位有效数字: 是指 整数部分 和小数部分一共7位 单精度数的尾数用23位存储,加上默认的小数点前的1位1,2^ ...

  8. 在Vue项目中使用vw实现移动端适配

    有关于移动端的适配布局一直以来都是众说纷纭,对应的解决方案也是有很多种.在<使用Flexible实现手淘H5页面的终端适配>提出了Flexible的布局方案,随着viewport单位越来越 ...

  9. Asp.Net 合并图片(二维码和其他图片合并)

    需求:根据网址生成二维码,然后再把二维码生成到背景图片上,然后显示在网页中 pic.ashx <%@ WebHandler Language="C#" Class=" ...

  10. [转]bootstrap table 动态列数

    原文地址:https://my.oschina.net/u/2356355/blog/1595563 据说bootstrap table非常好用,从入门教程中了解到它的以下主要功能: 由于固定表头意味 ...