http://uoj.ac/problem/209

单调栈求出每个位置x左边第一个大于它的位置L[x]和右第一个不小于它的位置R[x],于是矩形L[x]<=l<=x<=r<=R[x]内的点(l,r)对应的区间[l,r]的最值为x位置的值,这个矩形内的点只对答案数组的二阶差分的四个位置有影响,可以全部统计后再求两次前缀和得到答案。

#include<bits/stdc++.h>
typedef long long i64;
const int N=1e6+,P=;
char ib[N*],*ip=ib;
int _(){
int x=;
while(*ip<)++ip;
while(*ip>)x=x*+*ip++-;
return x;
}
int n,a[N],ss[N],ls[N],rs[N],sp=;
i64 s[N];
int main(){
fread(ib,,sizeof(ib),stdin);
n=_();
for(int i=;i<=n;++i)a[i]=_();
a[]=a[n+]=0x7fffffff;
for(int i=;i<=n+;++i){
while(sp&&a[ss[sp]]<a[i])rs[ss[sp--]]=i-;
ss[++sp]=i;
}
sp=;
for(int i=n;i>=;--i){
while(sp&&a[ss[sp]]<=a[i])ls[ss[sp--]]=i+;
ss[++sp]=i;
}
for(int i=;i<=n;++i){
int x=i-ls[i]+,y=rs[i]-i+;
if(x>y)std::swap(x,y);
s[]+=a[i];
s[x]-=a[i];
s[y]-=a[i];
s[x+y]+=a[i];
}
s[]%=P;
for(int i=;i<n;++i)(s[i]+=s[i-])%=P;
for(int i=;i<n;++i)(s[i]+=s[i-])%=P;
int ans=;
for(int i=;i<n;++i)ans^=s[i]<?s[i]+P:s[i];
printf("%d\n",ans);
return ;
}

uoj#213. 【UNR #1】争夺圣杯的更多相关文章

  1. 【uoj#213】[UNR #1]争夺圣杯 单调栈+差分

    题目描述 给出一个长度为 $n$ 的序列,对于 $1\sim n$ 的每一个数 $i$ ,求这个序列所有长度为 $i$ 的子区间的最大值之和,输出每一个 $i$ 的答案模 $998244353$ 后异 ...

  2. [UOJ213][UNR #1]争夺圣杯

    uoj description 一个长为\(n\)的序列,给定一个参数\(m\),求所有长度为\(m\)的区间的最大值之和. 对于所有的\(m\in[1,n]\)你都需要分别求出答案然后异或起来. \ ...

  3. UOJ#213——【UNR #1】争夺圣杯

    1.题意:给一个序列,枚举长度x,然后在这个序列中所有长度为x的区间,我们求出这些区间的最大值之和并取模,最后将所有的异或起来就好啦 2.分析:听说好多人写的 ,特来写一发 的算法骗访问量 话说这个东 ...

  4. uoj#213. 【UNR #1】争夺圣杯(单调栈)

    传送门 我们枚举每一个元素,用单调栈做两遍计算出它左边第一个大于它的位置\(l[i]\)和右边第一个大于它的位置\(r[i]\),那么一个区间以它为最大值就意味着这个区间的左端点在\([l[i]+1, ...

  5. 【UOJ UNR #1】争夺圣杯

    来自FallDream的博客,未经允许,请勿转载,谢谢. 传送门 考虑直接对每个数字,统计它会产生的贡献. 单调栈求出每个数字左边第一个大等于他的数,右边第一个大于他的 (注意只能有一边取等) 假设左 ...

  6. A. 【UNR #1】争夺圣杯

    题解: 一道比较水的题目 按照最一般的思路离散化后枚举最大值 然后考虑最大值的贡献 会发现需要分类讨论一下 发现对一段k的影响是等差数列 所以可以用线段树维护差分数组

  7. uoj213 【UNR #1】争夺圣杯

    题目 设\(f_i\)表示所有长度为\(i\)的区间的最大值的和,求\(\bigoplus \sum_{i=1}^nf_i\) 不难发现随机数据非常好做 由于一个随机序列的前缀最大值期望只会变化\(\ ...

  8. UOJ.311.[UNR#2]积劳成疾(DP)

    UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...

  9. uoj【UNR #3】To Do Tree 【贪心】

    题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #in ...

随机推荐

  1. HDU 2561

    F - 第二第二 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Prac ...

  2. C#并发编程之异步编程2

    C#并发编程之异步编程(二)   写在前面 前面一篇文章介绍了异步编程的基本内容,同时也简要说明了async和await的一些用法.本篇文章将对async和await这两个关键字进行深入探讨,研究其中 ...

  3. C# 日常

    var lines = JsonConvert.DeserializeObject<List<qqq>>(dataSource); 类参数   publist string d ...

  4. Go Example--通道选择器

    package main import ( "fmt" "time" ) func main() { c1 := make(chan string) c2 := ...

  5. mongodb千万级写入怎么优化

    从mysql数据库通过java程序导入单表1300w到mongodb,花了大概50分钟,前1000w条数据中每100w条大概要3分钟,之后的300多w条就差不多每100w条要5到6分钟,之后再从其他的 ...

  6. centos 7.0 lnmp成功安装过程

    下载nginx,wget 是一个下载命令-c 是断点续传(不要也这个也可以) [root@bogon ~]# wget -c http://nginx.org/download/nginx-1.7.9 ...

  7. python Console menu

    I just finished a demo which is to provide an easy way to control hardware resources of A sample. Th ...

  8. S老师 破坏神学习

    代码质量不高 就不整理了 发上来留个纪念 表示自己写过了 数据库:MySQL,服务端:PhotonServer 视频:https://pan.baidu.com/s/1i4ROaRr 客户端:http ...

  9. MCU ADC 进入 PD 模式后出现错误的值?

    MCU ADC 进入 PD 模式后出现错误的值? 在调试一款 MCU,最开始问题是无法读到 ADC 的值,应该是读到的值是异常高. 怀疑问题 可能是主频太低,为了降低功耗,这个 MCU 主频被我降了很 ...

  10. 关于 php 和 python 的浮点计算 0.1+0.2

    关于 php 和 python 的浮点计算 0.1+0.2 看到群里有小伙伴说为什么 python 计算出 0.1+0.2 是 0.30000000000000004 >>> pri ...