机器学习笔记——t分布知识点总结
(原创文章,转载请注明地址:http://www.cnblogs.com/wangkundentisy/p/6539058.html )
1.t分布式统计分布的一种,同卡方分布(χ2分布)、F分布并称为三大分布。
- {\displaystyle {\overline {X}}_{n}=(X_{1}+\cdots +X_{n})/n}
为样本均值。
- {\displaystyle {S_{n}}^{2}={\frac {1}{n-1}}\sum _{i=1}^{n}\left(X_{i}-{\overline {X}}_{n}\right)^{2}}
为样本方差。
它显示了数量
- {\displaystyle {\frac {\Gamma ({\frac {\nu +1}{2}})}{{\sqrt {\nu \pi }}\,\Gamma ({\frac {\nu }{2}})}}={\frac {(\nu -1)(\nu -3)\cdots 5\cdot 3}{2{\sqrt {\nu }}(\nu -2)(\nu -4)\cdots 4\cdot 2\,}}\cdot }
如果{\displaystyle \nu }是奇数,
- {\displaystyle \Pr(-A<T<A)=0.90\,}
这与
那么
- {\displaystyle \Pr \left(-A<{{\overline {X}}_{n}-\mu \over S_{n}/{\sqrt {n}}}<A\right)=0.9,}
等价于
单侧
|
75%
|
80%
|
85%
|
90%
|
95%
|
97.5%
|
99%
|
99.5%
|
99.75%
|
99.9%
|
99.95%
|
---|---|---|---|---|---|---|---|---|---|---|---|
双侧
|
50%
|
60%
|
70%
|
80%
|
90%
|
95%
|
98%
|
99%
|
99.5%
|
99.8%
|
99.9%
|
1
|
1.000
|
1.376
|
1.963
|
3.078
|
6.314
|
12.71
|
31.82
|
63.66
|
127.3
|
318.3
|
636.6
|
2
|
0.816
|
1.061
|
1.386
|
1.886
|
2.920
|
4.303
|
6.965
|
9.925
|
14.09
|
22.33
|
31.60
|
3
|
0.765
|
0.978
|
1.250
|
1.638
|
2.353
|
3.182
|
4.541
|
5.841
|
7.453
|
10.21
|
12.92
|
4
|
0.741
|
0.941
|
1.190
|
1.533
|
2.132
|
2.776
|
3.747
|
4.604
|
5.598
|
7.173
|
8.610
|
5
|
0.727
|
0.920
|
1.156
|
1.476
|
2.015
|
2.571
|
3.365
|
4.032
|
4.773
|
5.893
|
6.869
|
6
|
0.718
|
0.906
|
1.134
|
1.440
|
1.943
|
2.447
|
3.143
|
3.707
|
4.317
|
5.208
|
5.959
|
7
|
0.711
|
0.896
|
1.119
|
1.415
|
1.895
|
2.365
|
2.998
|
3.499
|
4.029
|
4.785
|
5.408
|
8
|
0.706
|
0.889
|
1.108
|
1.397
|
1.860
|
2.306
|
2.896
|
3.355
|
3.833
|
4.501
|
5.041
|
9
|
0.703
|
0.883
|
1.100
|
1.383
|
1.833
|
2.262
|
2.821
|
3.250
|
3.690
|
4.297
|
4.781
|
10
|
0.700
|
0.879
|
1.093
|
1.372
|
1.812
|
2.228
|
2.764
|
3.169
|
3.581
|
4.144
|
4.587
|
11
|
0.697
|
0.876
|
1.088
|
1.363
|
1.796
|
2.201
|
2.718
|
3.106
|
3.497
|
4.025
|
4.437
|
12
|
0.695
|
0.873
|
1.083
|
1.356
|
1.782
|
2.179
|
2.681
|
3.055
|
3.428
|
3.930
|
4.318
|
13
|
0.694
|
0.870
|
1.079
|
1.350
|
1.771
|
2.160
|
2.650
|
3.012
|
3.372
|
3.852
|
4.221
|
14
|
0.692
|
0.868
|
1.076
|
1.345
|
1.761
|
2.145
|
2.624
|
2.977
|
3.326
|
3.787
|
4.140
|
15
|
0.691
|
0.866
|
1.074
|
1.341
|
1.753
|
2.131
|
2.602
|
2.947
|
3.286
|
3.733
|
4.073
|
16
|
0.690
|
0.865
|
1.071
|
1.337
|
1.746
|
2.120
|
2.583
|
2.921
|
3.252
|
3.686
|
4.015
|
17
|
0.689
|
0.863
|
1.069
|
1.333
|
1.740
|
2.110
|
2.567
|
2.898
|
3.222
|
3.646
|
3.965
|
18
|
0.688
|
0.862
|
1.067
|
1.330
|
1.734
|
2.101
|
2.552
|
2.878
|
3.197
|
3.610
|
3.922
|
19
|
0.688
|
0.861
|
1.066
|
1.328
|
1.729
|
2.093
|
2.539
|
2.861
|
3.174
|
3.579
|
3.883
|
20
|
0.687
|
0.860
|
1.064
|
1.325
|
1.725
|
2.086
|
2.528
|
2.845
|
3.153
|
3.552
|
3.850
|
21
|
0.686
|
0.859
|
1.063
|
1.323
|
1.721
|
2.080
|
2.518
|
2.831
|
3.135
|
3.527
|
3.819
|
22
|
0.686
|
0.858
|
1.061
|
1.321
|
1.717
|
2.074
|
2.508
|
2.819
|
3.119
|
3.505
|
3.792
|
23
|
0.685
|
0.858
|
1.060
|
1.319
|
1.714
|
2.069
|
2.500
|
2.807
|
3.104
|
3.485
|
3.767
|
24
|
0.685
|
0.857
|
1.059
|
1.318
|
1.711
|
2.064
|
2.492
|
2.797
|
3.091
|
3.467
|
3.745
|
25
|
0.684
|
0.856
|
1.058
|
1.316
|
1.708
|
2.060
|
2.485
|
2.787
|
3.078
|
3.450
|
3.725
|
26
|
0.684
|
0.856
|
1.058
|
1.315
|
1.706
|
2.056
|
2.479
|
2.779
|
3.067
|
3.435
|
3.707
|
27
|
0.684
|
0.855
|
1.057
|
1.314
|
1.703
|
2.052
|
2.473
|
2.771
|
3.057
|
3.421
|
3.690
|
28
|
0.683
|
0.855
|
1.056
|
1.313
|
1.701
|
2.048
|
2.467
|
2.763
|
3.047
|
3.408
|
3.674
|
29
|
0.683
|
0.854
|
1.055
|
1.311
|
1.699
|
2.045
|
2.462
|
2.756
|
3.038
|
3.396
|
3.659
|
30
|
0.683
|
0.854
|
1.055
|
1.310
|
1.697
|
2.042
|
2.457
|
2.750
|
3.030
|
3.385
|
3.646
|
40
|
0.681
|
0.851
|
1.050
|
1.303
|
1.684
|
2.021
|
2.423
|
2.704
|
2.971
|
3.307
|
3.551
|
50
|
0.679
|
0.849
|
1.047
|
1.299
|
1.676
|
2.009
|
2.403
|
2.678
|
2.937
|
3.261
|
3.496
|
60
|
0.679
|
0.848
|
1.045
|
1.296
|
1.671
|
2.000
|
2.390
|
2.660
|
2.915
|
3.232
|
3.460
|
80
|
0.678
|
0.846
|
1.043
|
1.292
|
1.664
|
1.990
|
2.374
|
2.639
|
2.887
|
3.195
|
3.416
|
100
|
0.677
|
0.845
|
1.042
|
1.290
|
1.660
|
1.984
|
2.364
|
2.626
|
2.871
|
3.174
|
3.390
|
120
|
0.677
|
0.845
|
1.041
|
1.289
|
1.658
|
1.980
|
2.358
|
2.617
|
2.860
|
3.160
|
3.373
|
0.674
|
0.842
|
1.036
|
1.282
|
1.645
|
1.960
|
2.326
|
2.576
|
2.807
|
3.090
|
3.291
|
机器学习笔记——t分布知识点总结的更多相关文章
- Python机器学习笔记:不得不了解的机器学习知识点(2)
之前一篇笔记: Python机器学习笔记:不得不了解的机器学习知识点(1) 1,什么样的资料集不适合用深度学习? 数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势. 数据集没有局 ...
- Python机器学习笔记:不得不了解的机器学习面试知识点(1)
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...
- Python机器学习笔记:使用Keras进行回归预测
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- Python机器学习笔记 集成学习总结
集成学习(Ensemble learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器显著优越的泛化性能.它不是一种单独的机器学习算法啊,而更像是一种优 ...
- Python机器学习笔记:K-Means算法,DBSCAN算法
K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...
- python机器学习笔记:EM算法
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于E ...
- Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...
随机推荐
- 配置Glassfish服务器、部署Java web项目、Maven安装配置及JDK版本匹配性问题
错误一:在win7上通过命令asadmin start-domain启动Glassfish服务器时报错(如下): Exception in thread "main" java.l ...
- xdoj-1211 (尧老师要教孩子解方程) :多项式除法
想法: 1 由于所有a[i] 是不为0的整数 所以解x是整数 2 其次解是an的约数 3 分解a[n] 用多项式除法判断约数是否为整式的解 #include<cstdio> #includ ...
- xdoj 1067组合数学+动态规划 (一个题断断续续想了半年 233)
题目分析 : (8 4) 可以由(7 4),(6,4),( 4,4) 基础上转化 意味着一个新加入的元素可以按照它加入的方式分类,从而实现动态规划 核心:加入方式 新加入的元素构成转换环的元素个数(n ...
- xdoj-1057(Lucas定理的证明及其模板)
Lucas定理的证明: 转自百度百科(感觉写的还不错) 首先你需要这个算式: ,其中f > 0&& f < p,然后 (1 + x) nΞ(1 + x) sp+q Ξ ...
- HDU 1260:Tickets(DP)
Tickets Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- POJ 1200:Crazy Search(哈希)
Crazy Search Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 32483 Accepted: 8947 Des ...
- HDU 2561
F - 第二第二 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status Prac ...
- 《DSP using MATLAB》Problem 6.23
代码: %% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ %% Output In ...
- Centos7部署ntp服务器同步时间以及直接将本地时间同步为北京时间
一.查看配置 查看时区列表: timedatectl list-timezones|grep Asia 查看当前时间: date 查看当前设置: [root@localhost ~]# timedat ...
- MySQL Network--Localhost与127.0.0.1的差异
localhost为本地服务器,而127.0.01为本机地址.在使用localhost时不经过网卡传输,不受网络防火墙和网卡相关的限制,访问localhost不会被解析成ip地址,不会占用网卡和网络资 ...