Ref: http://blog.csdn.net/gdfsg/article/details/50904811

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv; //计算相对窗口的坐标值,因为坐标原点在左上角,所以sin前有个负号
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
} static void help()
{
printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"
" Tracking of rotating point.\n"
" Rotation speed is constant.\n"
" Both state and measurements vectors are 1D (a point angle),\n"
" Measurement is the real point angle + gaussian noise.\n"
" The real and the estimated points are connected with yellow line segment,\n"
" the real and the measured points are connected with red line segment.\n"
" (if Kalman filter works correctly,\n"
" the yellow segment should be shorter than the red one).\n"
"\n"
" Pressing any key (except ESC) will reset the tracking with a different speed.\n"
" Pressing ESC will stop the program.\n"
);
} int main(int, char**)
{
help();
Mat img(, , CV_8UC3);
KalmanFilter KF(, , ); //创建卡尔曼滤波器对象KF
Mat state(, , CV_32F); //state(角度,△角度)
Mat processNoise(, , CV_32F);
Mat measurement = Mat::zeros(, , CV_32F); //定义测量值
char code = (char)-; for(;;)
{
//1.初始化
randn( state, Scalar::all(), Scalar::all(0.1) ); KF.transitionMatrix = *(Mat_<float>(, ) << , , , ); //转移矩阵A[1,1;0,1] //将下面几个矩阵设置为对角阵
setIdentity(KF.measurementMatrix); //测量矩阵H
setIdentity(KF.processNoiseCov, Scalar::all(1e-)); //系统噪声方差矩阵Q
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-)); //测量噪声方差矩阵R
setIdentity(KF.errorCovPost, Scalar::all()); //后验错误估计协方差矩阵P randn(KF.statePost, Scalar::all(), Scalar::all(0.1)); //x(0)初始化 for(;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f); //center图像中心点
float R = img.cols/.f; //半径
double stateAngle = state.at<float>(); //跟踪点角度
Point statePt = calcPoint(center, R, stateAngle); //跟踪点坐标statePt //2. 预测
Mat prediction = KF.predict(); //计算预测值,返回x'
double predictAngle = prediction.at<float>(); //预测点的角度
Point predictPt = calcPoint(center, R, predictAngle); //预测点坐标predictPt //3.更新
//measurement是测量值
randn( measurement, Scalar::all(), Scalar::all(KF.measurementNoiseCov.at<float>())); //给measurement赋值N(0,R)的随机值 // generate measurement
measurement += KF.measurementMatrix*state; //z = z + H*x; double measAngle = measurement.at<float>();
Point measPt = calcPoint(center, R, measAngle); // plot points
//定义了画十字的方法,值得学习下
#define drawCross( center, color, d ) \
line( img, Point( center.x - d, center.y - d ), \
Point( center.x + d, center.y + d ), color, , CV_AA, ); \
line( img, Point( center.x + d, center.y - d ), \
Point( center.x - d, center.y + d ), color, , CV_AA, ) img = Scalar::all();
drawCross( statePt, Scalar(,,), );
drawCross( measPt, Scalar(,,), );
drawCross( predictPt, Scalar(,,), );
line( img, statePt, measPt, Scalar(,,), , CV_AA, );
line( img, statePt, predictPt, Scalar(,,), , CV_AA, ); //调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
if(theRNG().uniform(,) != )
KF.correct(measurement); //不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
randn( processNoise, Scalar(), Scalar::all(sqrt(KF.processNoiseCov.at<float>(, )))); //vk
state = KF.transitionMatrix*state + processNoise; imshow( "Kalman", img );
code = (char)waitKey(); if( code > )
break;
}
if( code == || code == 'q' || code == 'Q' )
break;
} return ;
}

Result: 

[OpenCV] Samples 14: kalman filter的更多相关文章

  1. [Scikit-learn] Dynamic Bayesian Network - Kalman Filter

    看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html SciPy Cookbook:http ...

  2. 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV

    之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...

  3. 机器学习理论基础学习14.1---线性动态系统-卡曼滤波 Kalman filter

    一.背景 动态模型 = 图 + 时间 动态模型有三种:HMM.线性动态系统(kalman filter).particle filter 线性动态系统与HMM的区别是假设相邻隐变量之间满足线性高斯分布 ...

  4. (转) How a Kalman filter works, in pictures

    How a Kalman filter works, in pictures I have to tell you about the Kalman filter, because what it d ...

  5. 卡尔曼滤波(Kalman Filter)在目标边框预测中的应用

    1.卡尔曼滤波的导论 卡尔曼滤波器(Kalman Filter),是由匈牙利数学家Rudolf Emil Kalman发明,并以其名字命名.卡尔曼出生于1930年匈牙利首都布达佩斯.1953,1954 ...

  6. 一文搞懂 SLAM 中的Extension Kalman Filter 算法编程

    作者 | Doreen 01 问题描述 预先知道事物未来的状态总是很有价值的! √ 预知台风的路线可以避免或减轻重大自然灾害的损失. √ 敌国打过来的导弹,如果能够高精度预测轨迹,就能有效拦截. √ ...

  7. 卡尔曼滤波器 Kalman Filter (转载)

    在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil ...

  8. [OpenCV] Samples 10: imagelist_creator

    yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...

  9. (二). 细说Kalman滤波:The Kalman Filter

    本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然K ...

随机推荐

  1. db2存储过程动态sql被截断

    编写存储过程,使用动态sql时,调试时发现变量赋值后被截断. 关键代码如下: 实现的效果是先把上下游做对比的sql语句和相关参数存入RKDM_DATA_VOID_RULE, 执行存储过程后把两个sql ...

  2. winform自动更新之AutoUpdater.NET

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zhaobw831/article/details/82226291使用AutoUpdater.NET ...

  3. .NET:Threading and Exceptions

    Do handle exceptions in threads. Unhandled exceptions in threads, even background threads, generally ...

  4. Android GUI之View测量

    在上篇文章(http://www.cnblogs.com/jerehedu/p/4607599.html#gui)中,根据源码探索了View的绘制过程,过程有三个主要步骤,分别为测量.布局.绘制.系统 ...

  5. 图像的视差匹配(Stereo Matching)

    这里要求用我们自己计算得到的视差图和给的视差图作比較来比較我们得到的视差图的好坏程度,我视差图返回的值是计算得到的视差乘以3之后的图,所以在计算时我不是两个值相差大于1,而是大于3.由于两个图像都乘3 ...

  6. ubuntu 安装SSH并设置免密码登录

    cd ~/.ssh/ # 若没有该目录,请先执行一次ssh localhost ssh-keygen -t rsa # 会有提示,都按回车就可以 cat ./id_rsa.pub >> . ...

  7. Spark实现K-Means算法

    K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类. MLlib实现K-Means算法的原理是,运行多个K-Means算法,每个称为run,返回最好的那 ...

  8. Python实现邮件的批量发送

    Python实现邮件的批量发送 1 发送文本信息 '''加密发送文本邮件''' def sendEmail(from_addr,password,to_addr,smtp_server): try: ...

  9. composer 使用

    #安装 composer curl -sS https://getcomposer.org/installer | php或直接下载 composer.phar( https://getcompose ...

  10. 11G新特性 -- 分区表和增量统计信息

    对于分区表,优化器会在全局级别为整个表维护一份统计信息,也会在分区级别为分区表维护一份统计信息. 对于大多数分区,dml一般都是在最近的分区上执行.在11g中,数据库支持只对那些发生一定数据变化的分区 ...