转化:

RDD、DataFrame、Dataset三者有许多共性,有各自适用的场景常常需要在三者之间转换

DataFrame/Dataset转RDD:

这个转换很简单

val rdd1=testDF.rdd
val rdd2=testDS.rdd RDD转DataFrame: import spark.implicits._
val testDF = rdd.map {line=>
(line._1,line._2)
}.toDF("col1","col2") 一般用元组把一行的数据写在一起,然后在toDF中指定字段名 RDD转Dataset:

import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = rdd.map {line=>
Coltest(line._1,line._2)
}.toDS 可以注意到,定义每一行的类型(case class)时,已经给出了字段名和类型,后面只要往case class里面添加值即可 Dataset转DataFrame: 这个也很简单,因为只是把case class封装成Row import spark.implicits._
val testDF = testDS.toDF DataFrame转Dataset: import spark.implicits._
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
val testDS = testDF.as[Coltest] 这种方法就是在给出每一列的类型后,使用as方法,转成Dataset,这在数据类型是DataFrame又需要针对各个字段处理时极为方便
特别注意: 在使用一些特殊的操作时,一定要加上 import spark.implicits._ 不然toDF、toDS无法使用

package dataframe


import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}


//
// Explore interoperability between DataFrame and Dataset. Note that Dataset
// is covered in much greater detail in the 'dataset' directory.
//
object DatasetConversion {


case class Cust(id: Integer, name: String, sales: Double, discount: Double, state: String)


case class StateSales(state: String, sales: Double)


def main(args: Array[String]) {
val spark =
SparkSession.builder()
.appName("DataFrame-DatasetConversion")
.master("local[4]")
.getOrCreate()


import spark.implicits._


// create a sequence of case class objects
// (we defined the case class above)
val custs = Seq(
Cust(1, "Widget Co", 120000.00, 0.00, "AZ"),
Cust(2, "Acme Widgets", 410500.00, 500.00, "CA"),
Cust(3, "Widgetry", 410500.00, 200.00, "CA"),
Cust(4, "Widgets R Us", 410500.00, 0.0, "CA"),
Cust(5, "Ye Olde Widgete", 500.00, 0.0, "MA")
)


// Create the DataFrame without passing through an RDD
val customerDF : DataFrame = spark.createDataFrame(custs)
//
// println("*** DataFrame schema")
//
// customerDF.printSchema()
//
// println("*** DataFrame contents")
//
// customerDF.show()

// +---+---------------+--------+--------+-----+
//| id| name| sales|discount|state|
//+---+---------------+--------+--------+-----+
//| 1| Widget Co|120000.0| 0.0| AZ|
//| 2| Acme Widgets|410500.0| 500.0| CA|
//| 3| Widgetry|410500.0| 200.0| CA|
//| 4| Widgets R Us|410500.0| 0.0| CA|
//| 5|Ye Olde Widgete| 500.0| 0.0| MA|
//+---+---------------+--------+--------+-----+


//
// println("*** Select and filter the DataFrame")
//
val smallerDF =
customerDF.select("sales", "state").filter($"state".equalTo("CA"))
//
// smallerDF.show()

//
// +--------+-----+
//| sales|state|
//+--------+-----+
//|410500.0| CA|
//|410500.0| CA|
//|410500.0| CA|
//+--------+-----+

///////////////////////////////////////////////////////////////////////////////////

// Convert it to a Dataset by specifying the type of the rows -- use a case
// class because we have one and it's most convenient to work with. Notice
// you have to choose a case class that matches the remaining columns.
// BUT also notice that the columns keep their order from the DataFrame --
// later you'll see a Dataset[StateSales] of the same type where the
// columns have the opposite order, because of the way it was created.


val customerDS : Dataset[StateSales] = smallerDF.as[StateSales]
//
// println("*** Dataset schema")
//
// customerDS.printSchema()
//
// println("*** Dataset contents")
//
// customerDS.show()


// Select and other operations can be performed directly on a Dataset too,
// but be careful to read the documentation for Dataset -- there are
// "typed transformations", which produce a Dataset, and
// "untyped transformations", which produce a DataFrame. In particular,
// you need to project using a TypedColumn to gate a Dataset.


// val verySmallDS : Dataset[Double] = customerDS.select($"sales".as[Double])
//
// println("*** Dataset after projecting one column")
//
// verySmallDS.show()

//
//+--------+
//| sales|
//+--------+
//|410500.0|
//|410500.0|
//|410500.0|
//+--------+


// If you select multiple columns on a Dataset you end up with a Dataset
// of tuple type, but the columns keep their names.
val tupleDS : Dataset[(String, Double)] =
customerDS.select($"state".as[String], $"sales".as[Double])
//
// println("*** Dataset after projecting two columns -- tuple version")
//
// tupleDS.show()

//
//+-----+--------+
//|state| sales|
//+-----+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-----+--------+


// You can also cast back to a Dataset of a case class. Notice this time
// the columns have the opposite order than the last Dataset[StateSales]
// val betterDS: Dataset[StateSales] = tupleDS.as[StateSales]
//
// println("*** Dataset after projecting two columns -- case class version")
//
// betterDS.show()

//
//+-----+--------+
//|state| sales|
//+-----+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-----+--------+


// Converting back to a DataFrame without making other changes is really easy
// val backToDataFrame : DataFrame = tupleDS.toDF()
//
// println("*** This time as a DataFrame")
//
// backToDataFrame.show()
//

//+-----+--------+
//|state| sales|
//+-----+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-----+--------+


//
// // While converting back to a DataFrame you can rename the columns
val renamedDataFrame : DataFrame = tupleDS.toDF("MyState", "MySales")


println("*** Again as a DataFrame but with renamed columns")


renamedDataFrame.show()


// +-------+--------+
//|MyState| MySales|
//+-------+--------+
//| CA|410500.0|
//| CA|410500.0|
//| CA|410500.0|
//+-------+--------+


}
}

 

RDD、DataFrame、Dataset三者三者之间转换的更多相关文章

  1. APACHE SPARK 2.0 API IMPROVEMENTS: RDD, DATAFRAME, DATASET AND SQL

    What’s New, What’s Changed and How to get Started. Are you ready for Apache Spark 2.0? If you are ju ...

  2. spark的数据结构 RDD——DataFrame——DataSet区别

    转载自:http://blog.csdn.net/wo334499/article/details/51689549 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接 ...

  3. sparkSQL中RDD——DataFrame——DataSet的区别

    spark中RDD.DataFrame.DataSet都是spark的数据集合抽象,RDD针对的是一个个对象,但是DF与DS中针对的是一个个Row RDD 优点: 编译时类型安全 编译时就能检查出类型 ...

  4. RDD, DataFrame or Dataset

    总结: 1.RDD是一个Java对象的集合.RDD的优点是更面向对象,代码更容易理解.但在需要在集群中传输数据时需要为每个对象保留数据及结构信息,这会导致数据的冗余,同时这会导致大量的GC. 2.Da ...

  5. spark rdd df dataset

    RDD.DataFrame.DataSet的区别和联系 共性: 1)都是spark中得弹性分布式数据集,轻量级 2)都是惰性机制,延迟计算 3)根据内存情况,自动缓存,加快计算速度 4)都有parti ...

  6. byte[] 、Bitmap与Drawbale 三者直接的转换

    经常遇到这种类似头疼的问题 byte[] .Bitmap与Drawbale 三者直接的转换 1.byte[] ->Bitmap Bitmap Bitmap = BitmapFactory.dec ...

  7. Spark入门之DataFrame/DataSet

    目录 Part I. Gentle Overview of Big Data and Spark Overview 1.基本架构 2.基本概念 3.例子(可跳过) Spark工具箱 1.Dataset ...

  8. C#中对象,字符串,dataTable、DataReader、DataSet,对象集合转换成Json字符串方法。

    C#中对象,字符串,dataTable.DataReader.DataSet,对象集合转换成Json字符串方法. public class ConvertJson { #region 私有方法 /// ...

  9. 关于不同进制数之间转换的数学推导【Written By KillerLegend】

    关于不同进制数之间转换的数学推导 涉及范围:正整数范围内二进制(Binary),八进制(Octonary),十进制(Decimal),十六进制(hexadecimal)之间的转换 数的进制有多种,比如 ...

随机推荐

  1. 单周期CPU设计的理论基础

    写在前面:本博客内容为本人老师原创,严禁任何形式的转载!本博客只允许放在博客园(.cnblogs.com),如果您在其他网站看到这篇博文,请通过下面这个唯一的合法链接转到原文! 本博客全网唯一合法UR ...

  2. ACM:油田(Oil Deposits,UVa 572)

    /* Oil Deposits Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...

  3. mysql设置指定ip访问,用户权限相关操作

    基础语法GRANT priv_type ON database.table TO user[IDENTIFIED BY [PASSWORD] 'password'] [,user [IDENTIFIE ...

  4. Python开发【模块】:aiohttp(一)

    AIOHTTP 用于asyncio和Python的异步HTTP客户端/服务器 主要特点: 支持客户端和HTTP服务器. 支持服务器WebSockets和 客户端WebSockets开箱即用,没有回调地 ...

  5. DevOps理论与实践总结

    DevOps指导理论与实践 [第01篇]:郭宏泽:全开源架构下的DevOps实践(转) SonarQube应用指南 [第一篇]:SonarQube Scanner报svn: E170001错误 che ...

  6. 运行Maven工程中修改tomcat端口

    Maven 运行:clean tomcat7:run 若需要修改端口,则用clean -Dmaven.tomcat.port=8082 tomcat7:run

  7. Linux I/O 调度器

    每个块设备或者块设备的分区,都对应有自身的请求队列,  而每个请求队列都可以选择一个I/O调度器来协调所递交的.I/O调度器的基本目的是将请求按照它们对应在块设备上的扇区号进行排列,以减少磁头的移动, ...

  8. 1、 LwIP协议栈规范翻译——简介

    1.简介 在过去几年中,计算机和计算机支持设备接之间的互联到无线网络日趋增加.计算机已经越来越无缝的集成在了日常的设备且价格也在下降.同时,无线网络技术例如蓝牙[HNI+98]和IEEE802.11b ...

  9. LeetCode-52.N-Queen II

    The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...

  10. VS Code编辑器对git项目的支持

    使用git随便clone一个项目下来, 然后用vscode打开项目, 随便打开某个文件, 添加几行代码: 9-11行是我新添加的, 左边绿色的竖条(点击就会看到明细)就表示这几行是新添加的. 然后修改 ...