HMM(隐马尔科夫模型)与分词、词性标注、命名实体识别
转载自 http://www.cnblogs.com/skyme/p/4651331.html
HMM(隐马尔可夫模型)是用来描述隐含未知参数的统计模型,举一个经典的例子:一个东京的朋友每天根据天气{下雨,天晴}决定当天的活动{公园散步,购物,清理房间}中的一种,我每天只能在twitter上看到她发的推“啊,我前天公园散步、昨天购物、今天清理房间了!”,那么我可以根据她发的推特推断东京这三天的天气。在这个例子里,显状态是活动,隐状态是天气。
HMM描述
任何一个HMM都可以通过下列五元组来描述:
:param obs:观测序列
:param states:隐状态
:param start_p:初始概率(隐状态)
:param trans_p:转移概率(隐状态)
:param emit_p: 发射概率 (隐状态表现为显状态的概率)
例子描述
这个例子可以用如下的HMM来描述:
states = ('Rainy', 'Sunny') observations = ('walk', 'shop', 'clean') start_probability = {'Rainy': 0.6, 'Sunny': 0.4} transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
} emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
求解最可能的天气
求解最可能的隐状态序列是HMM的三个典型问题之一,通常用维特比算法解决。维特比算法就是求解HMM上的最短路径(-log(prob),也即是最大概率)的算法。
稍微用中文讲讲思路,很明显,第一天天晴还是下雨可以算出来:
定义V[时间][今天天气] = 概率,注意今天天气指的是,前几天的天气都确定下来了(概率最大)今天天气是X的概率,这里的概率就是一个累乘的概率了。
因为第一天我的朋友去散步了,所以第一天下雨的概率V[第一天][下雨] = 初始概率[下雨] * 发射概率[下雨][散步] = 0.6 * 0.1 = 0.06,同理可得V[第一天][天晴] = 0.24 。从直觉上来看,因为第一天朋友出门了,她一般喜欢在天晴的时候散步,所以第一天天晴的概率比较大,数字与直觉统一了。
从第二天开始,对于每种天气Y,都有前一天天气是X的概率 * X转移到Y的概率 * Y天气下朋友进行这天这种活动的概率。因为前一天天气X有两种可能,所以Y的概率有两个,选取其中较大一个作为V[第二天][天气Y]的概率,同时将今天的天气加入到结果序列中
比较V[最后一天][下雨]和[最后一天][天晴]的概率,找出较大的哪一个对应的序列,就是最终结果。
这个例子的Python代码:
# -*- coding:utf-8 -*-
# Filename: viterbi.py
# Author:hankcs
# Date: 2014-05-13 下午8:51 states = ('Rainy', 'Sunny') observations = ('walk', 'shop', 'clean') start_probability = {'Rainy': 0.6, 'Sunny': 0.4} transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
} emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
} # 打印路径概率表
def print_dptable(V):
print " ",
for i in range(len(V)): print "%7d" % i,
print for y in V[0].keys():
print "%.5s: " % y,
for t in range(len(V)):
print "%.7s" % ("%f" % V[t][y]),
print def viterbi(obs, states, start_p, trans_p, emit_p):
""" :param obs:观测序列
:param states:隐状态
:param start_p:初始概率(隐状态)
:param trans_p:转移概率(隐状态)
:param emit_p: 发射概率 (隐状态表现为显状态的概率)
:return:
"""
# 路径概率表 V[时间][隐状态] = 概率
V = [{}]
# 一个中间变量,代表当前状态是哪个隐状态
path = {} # 初始化初始状态 (t == 0)
for y in states:
V[0][y] = start_p[y] * emit_p[y][obs[0]]
path[y] = [y] # 对 t > 0 跑一遍维特比算法
for t in range(1, len(obs)):
V.append({})
newpath = {} for y in states:
# 概率 隐状态 = 前状态是y0的概率 * y0转移到y的概率 * y表现为当前状态的概率
(prob, state) = max([(V[t - 1][y0] * trans_p[y0][y] * emit_p[y][obs[t]], y0) for y0 in states])
# 记录最大概率
V[t][y] = prob
# 记录路径
newpath[y] = path[state] + [y] # 不需要保留旧路径
path = newpath print_dptable(V)
(prob, state) = max([(V[len(obs) - 1][y], y) for y in states])
return (prob, path[state]) def example():
return viterbi(observations,
states,
start_probability,
transition_probability,
emission_probability) print example()
输出:
0 1 2
Rainy: 0.06000 0.03840 0.01344
Sunny: 0.24000 0.04320 0.00259
(0.01344, ['Sunny', 'Rainy', 'Rainy'])
NLP应用
具体到分词系统,可以将天气当成“标签”,活动当成“字或词”。那么,几个NLP的问题就可以转化为:
词性标注:给定一个词的序列(也就是句子),找出最可能的词性序列(标签是词性)。如ansj分词和ICTCLAS分词等。
分词:给定一个字的序列,找出最可能的标签序列(断句符号:[词尾]或[非词尾]构成的序列)。结巴分词目前就是利用BMES标签来分词的,B(开头),M(中间),E(结尾),S(独立成词)
命名实体识别:给定一个词的序列,找出最可能的标签序列(内外符号:[内]表示词属于命名实体,[外]表示不属于)。如ICTCLAS实现的人名识别、翻译人名识别、地名识别都是用同一个Tagger实现的。
小结
HMM是一个通用的方法,可以解决贴标签的一系列问题。
HMM(隐马尔科夫模型)与分词、词性标注、命名实体识别的更多相关文章
- HMM隐马尔科夫模型
这是一个非常重要的模型,凡是学统计学.机器学习.数据挖掘的人都应该彻底搞懂. python包: hmmlearn 0.2.0 https://github.com/hmmlearn/hmmlearn ...
- 自然语言处理(1)-HMM隐马尔科夫模型基础概念(一)
隐马尔科夫模型HMM 序言 文本序列标注是自然语言处理中非常重要的一环,我先接触到的是CRF(条件随机场模型)用于解决相关问题,因此希望能够对CRF有一个全面的理解,但是由于在学习过程中发现一个算法像 ...
- HMM 隐马尔科夫模型
参考如下博客: http://www.52nlp.cn/itenyh%E7%89%88-%E7%94%A8hmm%E5%81%9A%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8 ...
- HMM基本原理及其实现(隐马尔科夫模型)
HMM(隐马尔科夫模型)基本原理及其实现 HMM基本原理 Markov链:如果一个过程的“将来”仅依赖“现在”而不依赖“过去”,则此过程具有马尔可夫性,或称此过程为马尔可夫过程.马尔可夫链是时间和状态 ...
- 基于隐马尔科夫模型(HMM)的地图匹配(Map-Matching)算法
文章目录 1. 1. 摘要 2. 2. Map-Matching(MM)问题 3. 3. 隐马尔科夫模型(HMM) 3.1. 3.1. HMM简述 3.2. 3.2. 基于HMM的Map-Matchi ...
- 隐马尔科夫模型HMM学习最佳范例
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google ...
- HMM 自学教程(四)隐马尔科夫模型
本系列文章摘自 52nlp(我爱自然语言处理: http://www.52nlp.cn/),原文链接在 HMM 学习最佳范例,这是针对 国外网站上一个 HMM 教程 的翻译,作者功底很深,翻译得很精彩 ...
- 隐马尔科夫模型(HMM)的概念
定义隐马尔科夫模型可以用一个三元组(π,A,B)来定义:π 表示初始状态概率的向量A =(aij)(隐藏状态的)转移矩阵 P(Xit|Xj(t-1)) t-1时刻是j而t时刻是i的概率B =(bij) ...
- 猪猪的机器学习笔记(十七)隐马尔科夫模型HMM
隐马尔科夫模型HMM 作者:樱花猪 摘要: 本文为七月算法(julyedu.com)12月机器学习第十七次课在线笔记.隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来 ...
- 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法 ...
随机推荐
- 关于Q-LEARNING的优化
Q-LEARNING 最后得到的一个图寻路最佳路径:---直接转化为图关于多顶点深度遍历热度传递 V(level+1) = 0.8 * Max(Vi(level)) 这个方法可以在O时间收敛 原方 ...
- 2.23 js处理日历控件(修改readonly属性)
2.23 js处理日历控件(修改readonly属性) 前言 日历控件是web网站上经常会遇到的一个场景,有些输入框是可以直接输入日期的,有些不能,以我们经常抢票的12306网站为例,详细讲解如 ...
- Buildroot Savedefconfig
/********************************************************************************* * Buildroot Saved ...
- 【Leetcode】292. Nim Game
problem 292. Nim Game solution class Solution { public: bool canWinNim(int n) { ; } }; 来generalize一下 ...
- Java中的面向对象I
一.首先来了解一下Java面向对象的五个程序设计方式: 1.万物皆对象 Java以类为基本模块来将问题抽象化,在计算机中解决实际生活中的问题 2.程序为对象的集合,程序中的类通过互发消息来告知彼此要做 ...
- 如何更改Apache的根目录指向
更改Apache的默认网站根目录地址方法如下: 0,先找到主目录下的apache文件,然后进行下面操作 1.找到 DocumentRoot “X:/Apache/htdocs” 将“X:/Apache ...
- react状态提升问题::::
父组件传值给子组件,只需要在组件上写上naverightstates={this.state.naverightstates},然后在子组件里面引用this.props.naverightstates ...
- 自定义video样式
和朋友聊天说到了video自定义样式问题,今天抽空简单试验了一下,下面贴上代码. dom结构如下: <video id="video1" width="399&qu ...
- day python calss08 深浅copy
一 join (格式: . join) 遍历列表把列表中的每一项用指定符号进行拼接.(把列表转成字符串0 # lst = ["汪峰", "吴君如", &q ...
- Kafka设计解析:Kafka High Availability
Kafka在0.8以前的版本中,并不提供High Availablity机制,一旦一个或多个Broker宕机,则宕机期间其上所有Partition都无法继续提供服务.若该Broker永远不能再恢复,亦 ...